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Abstract

A canonical correlation analysis(CCA)-based method is proposed for prediction of future climate change

which combines information from ensembles of atmosphere-ocean general circulation models(AOGCMs) and

observed climate values. This paper focuses on predictions of future climate on a regional scale which are of

potential economic values. The proposed method is obtained by coupling the classical CCA with empirical

orthogonal functions(EOF) for dimension reduction. Furthermore, we generate a distribution of climate

responses, so that extreme events as well as a general feature such as long tails and unimodality can be

revealed through the distribution. Results from real data examples demonstrate the promising empirical

properties of the proposed approaches.

Keywords: Canonical correlation analysis, empirical orthogonal function, climate change, precipitation,

prediction.

1. Introduction

Predictions of future climate change are issues of global importance affecting the whole ecosystem

and human community. Especially, regional climate change projections are critical in many areas

such as food production, planning of industrial investment, energy demand and water resources.

This paper mainly emphasizes the future precipitation behavior in summer season near east Asia

region including Korea. A better projection of future precipitation changes during summer season

in Korea is crucial for controlling water resources and various industries such as insurance company.

The goal of this study is to develop a statistical method for reliable prediction of future climate

values and to provide a system for probabilistic prediction of climate.

1Corresponding author: Department of Statistics, Seoul National University, Seoul 151-747, Korea.

E-mail: yaeji@snu.ac.kr



1144 Yaeji Lim, Seongil Jo, Jaeyong Lee, Hee-Seok Oh, Hyun-Suk Kang

Figure 1.1. The prediction procedure of MOS.

There are three conventional approaches for climate prediction, namely a purely statistical approach,

a dynamical approach using the GCMs and model output statistics(MOS). Pure statistical approach

is the method that predicts unobserved climate value through a parametric statistical equation based

on past observed values. A popular choice is regression analysis. A purely statistical approach has

been used from the beginning of quantitative climate researches. However, it may not be appropriate

to perform a long-term prediction, because a statistical equation is valid only in the range of the

past climate which has been used for building the equation.

Numerical experiments based on coupled AOGCMs are typically used for projections of future

climate change. These models are based on the integration of a variety of fluid dynamical, chemical,

and sometimes biological equations. Although AOGCMs do an excellent job of representing global

climate change, it has been known that numerical realizations from AOGCMs are very limited to

represent regional climates (Greene et al., 2006).

The MOS approach more recently developed combines the above two approaches (Wilks, 2006;

Storch and Zwiers, 1999). Suppose that we have GCM output variables Xt and observations of

interests Yt (t = 1, . . . , T ), where t denotes a time point. The prediction procedure by MOS is

two-fold: 1) make a statistical equation that reflects the relationship between Yt and Xt, and 2)

predict future climate value YT+1 at T + 1 time point using the statistical equation and XT+1

which is available from numerical experiments. The procedure is clearly displayed in Figure 1.1.

The prediction accuracy of MOS is generally far better than either a pure statistical model or a

AOGCM prediction.

However, typically Xt is a large dimensional vector of model output values including temperature,

precipitation and pressure evaluated on a large spatial scale. The vector of past climate observations

Yt has relatively small dimension. That is, Xt and Yt are p and q dimensional vectors with p, q ≥ T .

In the cases where the number of variables pand q are larger than the number of observation T ,

the classical statistical methods such as regression analysis cannot be directly applicable due to

singularity problems.

In this paper, a statistical method based on CCA coupled with EOF is applied to predict monthly

precipitation anomalies with lead times of up to 3 months. Previously, Landman and Goddard

(2002) used a similar approach for regional rainfall forecasts of southern Africa. Here, by refinement

and elaboration of the hybrid method by coupling CCA and EOF, we provide a clear explanation of

the procedure on statistical theoretic ground and provide an exact formulation of prediction mech-

anism, so that anyone can use this method for one’s climate prediction. Furthermore, we propose a

resampling-based method to estimate probability distribution function(PDF) of the climate values.

Extreme events as well as a general trend of climate values will be revealed through the information

of the PDF, so that it will be useful tools for probabilistic prediction.
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Figure 2.1. The left panel indicates reduced grid points by merging adjacent 9 grid points from 144×73 grid points which covers
the whole global at regular interval by 2.5, and the right one shows the region of the data used for the regional precipitation
prediction.

The rest of the paper is organized as follows. Section 2 contains a general information of data used

in this study. In Section 3, we present the statistical methodology. We apply the methodology to

data and discuss the results in Section 4. The conclusions are offered in Section 5.

2. Data

2.1. GCM output data

We use GCM outputs of Global Data Assimilation and Prediction System(GDAPS) from Korea Me-

teorological Administration(KMA). It is monthly data from 1979 to 2008 that covers the whole globe

by 2.5×2.5 grid. There are 2-dimensional data such as sea level pressure(SLP), surface u wind(Us)

and ground temperature(Ts) and also 3-dimensional data such as height(HGT), u wind(U) and

surface t-td(DEPR) ranged 15 layers. As the initial time changes, there are 20 ensemble members

in GCM outputs. For seasonal predictions, we average 3 consecutive months such as representing

summer by June, July and August(JJA) and winter by December, January and February(DJF). In

this study, we merge adjacent 9 grid points as one new point with equal weight as in the left panel

of Figure 2.1 for effective computations.

2.2. Observed data

For observations of climate values, we analysis precipitation data from CPC Merged Analysis of

Precipitation(CMAP) anomalies analyzed the Climate Research Unit, UK during the period 1979–

2007. These are monthly data in 144×73 grid points that covers the whole global at regular interval

2.5×2.5. Similarly, we merge adjacent 9 grid points as one new point with equal weight, so that the

number of resulting grid points are 2592.
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2.3. Regional precipitation data

For regional climate prediction, we collect a portion of the CMAP data. The range of the data is

27.5◦–47.5◦N and 93.15◦–153.57◦W which covers only east Asia region including Korea in the right

panel of Figure 2.1.

3. Methods

3.1. Prediction method

The future climate value YT+1 can be predicted by

ŶT+1 = f(XT+1),

where XT+1 is a GCM output at a future time point T + 1 and f represents the statistical relation

between predictors {Xt}Tt=1 and responses {Yt}Tt=1.

Given the data {Xt}Tt=1 and {Yt}Tt=1, building the system f is the most important task for reliable

predictions. A popular approach is the classical regression analysis, where the f is a linear function.

However, the classical regression cannot be directly applied to this problem because X and Y are

high-dimensional data. For instance, for global precipitation prediction, we need to consider millions

of variables such as GCM precipitation field, pressure level, wind, etc, while the number (year or

month) of observation are so limited. Moreover, there are spatial correlations between two variables,

X and Y . We cannot obtain well-performed models without considering this correlation.

To solve the dimensionality problem and enhance the prediction power simultaneously, we propose

to use a hybrid method based on EOF and CCA. As two main ingredients of the hybrid method,

EOF is employed for dimensionality reduction of climate data, and CCA plays an important role

in improving the prediction ability. To be specific, the hybrid method consists of three steps:

(1) dimension reduction by EOF, (2) constructing prediction equation based on CCA, and (3)

synthesizing predicted values by regression.

Suppose that X be a p × T dimensional matrix of GCM outputs and Y be a q × T dimensional

matrix of a climate response variable. In the first step, by using EOF, X and Y can be represented

by

X =

p∑
i=1

αiξi and Y =

q∑
j=1

βjγj ,

where ξ1, . . . , ξp and γ1, . . . ,γq are orthonormal basis functions which are the eigenvectors of

Cov(X,X) and Cov(Y, Y ), respectively. Since the bases are orthonormal, the coefficients can be

expressed as

α = ΞTX and β = ΓTY,

where Ξ = [ξ1 · · · ξp] and Γ = [γ1 · · ·γq]. Thus, the individual coefficients are αi = XT ξi (i =

1, . . . , p) and βj = Y Tγj (j = 1, . . . , q). For a subsequent analysis, we select the first few bases,

p1(≤ p) and q1(≤ q), so that X and Y can be approximated by

X ≈
p1∑
i=1

αiξi and Y ≈
q1∑
j=1

βjγj .

Therefore, after applying EOF to X and Y respectively, we obtain new variables α = {α1, . . . , αp1}
and β = {β1, . . . , βq1} which are linear combinations of the original data chosen to represent the
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maximum possible fraction of the variability contained in the original data. To perform CCA in the

next step, the dataX and Y should have less variables than the sample size so that the corresponding

inverse matrices can be computable. In general, climate data is high dimensional, which has more

variables than the sample size, so that the CCA method cannot be directly employed. For this

reason, EOF analysis is performed on the both GCM outputs and observed variables.

In the second step, we apply the CCA to the new variables α and β. CCA is used as one of the

MOS methods that relate GCM outputs and observed climate variables (Glahn, 1963). It seeks

vectors φ1 and ψ1 such that the variables U1 = αTφ1 and V1 = βTψ1 maximize the correlation

ρ = Corr(U1, V1), termed the first canonical correlation. Here, the variables U1 and V1 are the first

pair of canonical variables, and the vectors φ1 and ψ1 are the first pair of canonical coefficients.

Subsequently, we try to find vectors maximizing the same correlation subject to the constraint that

they are to be uncorrelated with the first pair of canonical variables; this gives the second pair of

canonical variables. After the above procedure is repeated at p2 times, we obtain two canonical

variables U = (U1, . . . , Up2)T = ΦTα and V = (V1, . . . , Vp2)T = ΨTβ, where Φ = {φ1, . . . , φp2} and

Ψ = {ψ1, . . . , ψp2} with p2 ≤ min{p1, q1}. Then, by using best linear unbiased prediction(BLUP)

theory, we obtain predicted values V̂i (i = 1, . . . , p2) as

V̂i =
Cov(Vi, Ui)

Cov(Ui, Ui)
Ui =

Cov(βTψi,α
Tφi)

Cov(αTφi,α
Tφi)

αTφi =
ψT

i Cov(β,α)φi

φT
i Cov(α,α)φi

αTφi.

As one can see, the whole procedure depends on the estimators of Cov(α,α) and Cov(α,β). A

more accurate estimator of covariances will improve the quality of prediction. Although the above

two steps produce the most highly related canonical patterns of X and Y with a simple calculation

for prediction, it is performed on new canonical variables, but we are interested in the prediction

of the response variable Y .

To accomplish the prediction of the response variable, it is necessary to synthesize Ŷ from the

predicted canonical variables V . To that end, by using BULP theory again, we obtain predictions

of Y as Cov(Y, V )Cov(V, V )−1V . By simply plugging an estimate V̂ into V , we finally obtain the

predicted value Ŷ = Cov(Y, V )Cov(V, V )−1V̂ , where V̂ = (V̂1, . . . , V̂p2).

3.2. Probabilistic prediction using distribution of climate values

Here we propose a procedure for probabilistic prediction. To that end, it is required to obtain

PDF of climate values, which is useful tool for evaluating a normal event or an extreme one.

For estimating PDF of climate values, we generate predicted values by cross-validation which is

very popular statistical method to enlarge the sample. In this study, we used one-year-out cross-

validation. More precisely, one year is removed from the observed N years. Then the prediction

method described in Section 3.1 is applied to the remaining N − 1 year data, and evaluate the

predicted value for the removed year. After the above procedure is repeated over all N years, we

can generate one-year-out cross-validated data ŷ1, . . . , ŷN .

Given the data {ŷi}Ni=1, we estimate PDF of Y based on kernel density estimation method,

f̂h(y) =
1

Nh

N∑
i=1

K

(
y − ŷi
h

)
,

where K is proper kernel function and h is the smoothing parameter. More detail descriptions of

the kernel density estimation are in Parzen (1962).

Once the PDF of Y is obtained, we evaluate a lower and an upper quantile values which can be
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Figure 4.1. Time series of the comparing prediction for the Asia precipitation. The observed precipitation (black line), GCM
output (red line), and the result of the hybrid method (green line) are displayed.

used for threshold values to separate abnormal events from normal climates. Finally, we perform

probabilistic prediction using the values generated from the next year’s GCM outputs.

4. Results

4.1. Performance of the prediction method

For prediction of precipitation, we select JJA season GCM simulation precipitation field as the

best predictor X. In fact, the GCM simulation precipitation field produces the highest correlation

coefficient with the JJA season observed precipitation field Y . Figures 4.1 and 4.2 show the JJA

season prediction results of the hybrid method. To perform the prediction, we separate the whole

years into training years(1979–2004) and test years(2005–2007). The average fitted values and

average prediction values across years from 20 ensemble GCM members are displayed in Figures 4.1.

As shown, the overall patterns of prediction by the hybrid method are much closer to the real

observations than those of GCM results. Unfortunately, in the last test year, 2007, the GCM

prediction is closer to observed precipitation than prediction results of the hybrid method. But this

does not means that GCM prediction is better, it might be just due to the rapid change of observed

precipitation. Through the image plot of the globe in Figure 4.2, we can compare the performance

of the hybrid method with the GCM simulation of precipitation during JJA season of year 2007.

As shown, the hybrid method can capture the overall trend as well as an important local feature

such as La nina well. For an accurate comparison, we compute root mean squared error(RMSE)

for each method. RMSE is defined as

RMSE(y, ŷ) =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2,

where yi indicates observed precipitation at the i-th grid point, and ŷi denotes the predicted values

at the i-th grid point. The RMSE by the hybrid method is 0.619, while the RMSE from the

GCM simulation is 0.806. Therefore, the values of RMSE support the results of the image plot in

Figure 4.2. Furthermore, when we focus on the performance of regional prediction on Asia area in

Figures 2.1, the RMSE of the hybrid method and GCM are 0.600 and 1.046, respectively.
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Figure 4.2. The globe image plot of the predicted precipitation in 2007. The first panel shows the result from the EOF/CCA
method, the second one indicates the observed precipitation and the third one is for the GCM predicted value. All variables were
standarized to remove its unnecessary trends.

4.2. Probability distribution function of precipitation

By following the method described in Section 3.2, we compute cross-validated predicted values ŷ’s

for 20 ensemble members and 29 years. Subsequently, the PDF of precipitation in Asia region is

estimated by applying kernel density estimation to ŷ’s. For comparison, we also generate a PDF

of GCM precipitation outputs. Figure 4.3 shows two estimated PDF with two thresholds(30 and
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Figure 4.3. Estimated probability distribution function by applying the proposed method to 1979–2007 JJA season, Asia regional
precipitation data. The left panel shows the estimated PDF of hybrid method, and the right one is for the GCM output.

70 percentiles). The left panel is PDF based on the predicted precipitations of the hybrid method,

and the right panel is PDF from GCM outputs. Since the PDF of EOF/CCA method is longer and

narrower, it is considerably less uncertain than GCM based PDF.

4.3. Validations

For assessing the quality of prediction, we employ two methods such as linear error in probability

space(LEPS) and receiver operating characteristic(ROC) curve. LEPS score is defined as

LEPS =
1

N

N∑
i=1

|cdf(Fi)− cdf(Oi)|,

where cdf denotes cumulative PDF, Fi denote the predicted value of the ith grid point, and Oi

denotes the observation at the ith grid point. The value of LEPS is located in between 0 and

1. The perfect predicted case has 0 as LEPS value. Figure 4.4 displays LEPS scores from the

predicted values of Asia region precipitation during years 2005–2007. As shown, the LEPS scores

of the hybrid method are closer to 0 than those of GCM simulation.

As another validation measure, we consider ROC curve which has been widely used for visualizing

and analyzing the behavior of diagnostic systems. ROC curves are two-dimensional graphs where

true positive rate is plotted on the y-axis and false positive rate is plotted on the x-axis. An ROC

curve depicts relative trade-off between benefits and costs. Thus, one point in ROC curve is better

than another if it is located on upper-left area. Figure 4.5 shows ROC curves of the hybrid method

and GCM simulation. As shown, the ROC curve of the hybrid method is more biased to left up

side, which means that it provides more prediction accuracy than GCM prediction. Furthermore,

for more accurate comparison, we compute the ROC area which is the area under the curves. The

ROC area for the hybrid method is 0.5287 which is bigger than the GCM prediction’s 0.5071.

5. Conclusions

In this paper, we have predicted the future precipitation values by a hybrid method which is

based on CCA and EOF method. Since the dimension of climate data is very high, it is hard to
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Figure 4.4. LEPS for the 2005–2007, JJA season for the each method. The green line is for the hybrid method and the red one
is for GCM output.
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Figure 4.5. The ROC curves by the hybrid method(left) and GCM predicted precipitation(right) in 2005–2007. The numbers are
indicating threshold values.

apply a conventional statistical method directly. The key idea of the hybrid method is reducing

dimension using EOF analysis and then apply CCA to the reduced data. The method consists

of three steps. The first step is reducing the dimension of GCM output, X and observed data,

Y using EOF analysis. The second step is applying CCA to the reduced data. Then we obtain

canonical variables U and V and using BLUP theory, construct a prediction equation. The last step

is completing prediction by regression analysis. We show that prediction results by this method

outperform GCM-simulated prediction. In addition, we have provided a statistical system for

probabilistic prediction which is coupled of kernel density estimation with cross-validation method.
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