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Abstract
In this paper, we suggest a new method for the prediction of sharp changes in particulate matter (PM10)

using quantile mapping. To predict the current PM10 density in Seoul, we consider PM10 and precipitation in
Baengnyeong and Ganghwa monitoring stations observed a few hours before. For the PM10 distribution estima-
tion, we use the extreme value mixture model, which is a combination of conventional probability distributions
and the generalized Pareto distribution. Furthermore, we also consider a quantile generalized additive model
(QGAM) for the relationship modeling between precipitation and PM10. To prove the validity of our proposed
model, we conducted a simulation study and showed that the proposed method gives lower mean absolute differ-
ences. Real data analysis shows that the proposed method could give a more accurate prediction when there are
sharp changes in PM10 in Seoul.
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1. Introduction

In recent years, particulate matter has emerged as a serious atmospheric problem. In Korea, there
is a phenomenon of high concentration of particulate matter (PM10), which mainly occurs in spring
along with yellow sand. It is known that particulate matter not only contaminates the air, but also
affects the human respiratory system, causing coughing, asthma, seizures, and even death, adversely
affecting humans (Raaschou-Nielsen et al., 2013). To minimize the damage to public health due to air
pollution, the weather forecast reports the particulate matter concentration values for 19 regions across
Korea along with the weather. Table 1 shows the PM10 density classification table used for weather
reporting. In Korea, yellow dust (or Asian dust) originating from the deserts of Mongolia in northern
China is not a new issue and has been an issue for decades in the springtime. In addition, after the
preliminary forecast for particulate matter in August 2013 and the official forecast in February 2014,
public awareness of particulate matter and the ultra-particulate matter has increased (Kang and Kim,
2014).

Meanwhile, the causes of particulate matter can be divided into natural causes and artificial causes
(fuel combustion, dust from construction sites and roads, etc.). The ministry of environment is making
an effort to reduce the amount of ultra-particulate matter by enacting article 18 of the [special act on
particulate matter reduction and management] (emergency reduction measures for high concentration
particulate matter).
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Table 1: PM10 density classification according to the ministry of environment Korea

PM10 density (µg/m3) ≤30 30<PM10 ≤80 80<PM10 ≤150 PM10 > 150
Status Good Normal Bad Very bad

Table 2: Summary statistics of regional data

Station name
(Station number)

Baengnyeong
(102)

Seoul
(108)

Ganghwa
(201)

1st quantile 19.00 25.0 23.00
Median 29.00 39.0 36.00
Mean 38.35 45.1 36.00

3rd quantile 46.00 56.0 43.65
Missing value 7.25% 5.64% 6.71%

Top 5% 97 98 102
Top 1% 165 160 162

The Korea Environment Institute showed that when the daily precipitation increases, the atmo-
spheric cleaning effect of the precipitation occurs, and the occurrence of the high-concentration PM10
phenomenon is significantly reduced through a scatter plot of the daily precipitation and the average
daily PM10 concentration in Seoul (Korea Environment Institute, 2017). Guo et al. (2016) investigated
the association between rainfall and air quality using a distributed lag non-linear model, which also
showed a cleaning effect, resulting in a continuous reduction in particle contamination. Therefore,
we consider precipitation as a meteorological variable that affects particulate matter and focus on
modeling the change in the concentration of particulate matter according to precipitation in this study.

In the meantime, there have been several studies to predict high-concentration particulate matter
in Seoul. Lee et al. (2011) investigated the causes of high-concentration particulate matter below
PM10 and desirable weather conditions in Seoul, Korea based on rear trajectory analysis and cluster
analysis in connection with the systematic PM10 path. Hur et al. (2016) developed a neural network
model based on synoptic patterns in several meteorological fields such as geopotential height, air
temperature, relative humidity, and wind to provide a statistical reference for the prediction of PM10
grades in Seoul.

Since the concentration of particulate matter is greatly affected by the presence or absence of pre-
cipitation, the ultimate goal is to implement conditional extreme PM10 modeling by studying extreme
particulate matter patterns that can consider the influence of weather variables. For example, we want
to check whether PM10 in the Baengnyeong has a significant impact on Seoul in a few hours. Con-
ditional extreme modeling will be a very challenging problem, and the successful completion of this
study will be of great help to citizens who need high-concentration particulate matter forecasts.

Considering high-concentration particulate matter can be interpreted as being interested in the be-
havioral patterns of observation values corresponding to the end of the particulate matter concentration
distribution, and quantile regression (QR) proposed by Koenker and Bassett (1978) as a methodology
for modeling can be used. Since the existing quantile regression analysis methodologies assume a
linear relationship between the independent variable and the dependent variable, here, we intend to
use the quantile generalized additive models (QGAM) of Fasiolo et al. (2020) which can consider
nonlinear relationships.

A mixture model refers to a probability model for representing several subgroups in the entire
population to assume that they exist. In extreme value theory, we are generally interested in singular
values of the population, i.e. the values that correspond to the tails of the distribution. To analyze
this, an appropriate threshold is set, and values below the threshold are routine distributions such as
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Figure 1: PM10 and wind direction histogram of Baengnyeong, Seoul, and Ganghwa. PM10 follows a distribution
with a heavy tail on the right and the wind directions are around 250–290 degrees are the most.
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Figure 2: Location plots of Baengnyeong (Red), Seoul (Green), and Ganghwa (Blue) monitoring stations. The
yellow arrow indicates a 280-degree direction based on the Seoul Metropolitan Government’s monitoring station.

normal or gamma. The values above the threshold are also modeled as extreme value distributions
such as generalized Pareto.

2. Data

The data used for the analysis are hourly particulate matter data collected from the meteorolog-
ical data open portal of the Korea meteorological administration. There are three observed points:
Baengnyeong, Seoul, and Ganghwa. Baengnyeong is labeled 102, Seoul is 108, and Ganghwa is 201.

Table 2 is a summary of statistics for regional data from July 1, 2008, to June 30, 2020. The
average concentration of particulate matter was higher in Seoul, an urban area, than in the other two
rural areas. However, it could be confirmed that the top 5% and 1% particulate matter concentrations
did not have a relatively large variation depending on the location. Considering that the total amount
of data is large and the missing values are random, it was judged that the missing values account for a
small proportion, so the analysis was conducted without filling in with other values such as the mean
and median.

PM10 observed in spring in Korea also follows a distribution with a heavy tail on the right due
to the presence of yellow sand. Therefore, it is desirable to use a mixture model when analyzing the
concentration of particulate matter in Korea.

To examine the additional relationship between these three points, the wind direction information
for the springtime at Baengnyeong, Seoul, and Ganghwa is plotted as a histogram, as shown in Figure
1. As for the mode of wind direction for each location, it can be seen that Baengnyeong is 290 degrees,
Seoul is 270 degrees, and Ganghwa is 250 degrees, so the wind directions are around 250–290 degrees
are most.

In this regard, if you look at the map of the location of the weather station used in the study printed
in Figure 2, it can be seen that the Ganghwa and Baengnyeong weather stations are located between
280 and 285 degrees from the Seoul weather station. Based on Figures 1 and 2, it can be assumed that
the events observed at the weather station in the west were similarly observed at the weather station
in the east a few hours later in Korea’s spring weather phenomena, including particulate matter and
precipitation.
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Table 3: AIC and BIC values for extreme value mixture model candidates for the PM10 model in air quality stat
ions

Gamma
Baengnyeong

Weibull
Baengnyeong

Gamma
Seoul

Weibull
Seoul

Gamma
Ganghwa

Weibull
Ganghwa

AIC 231639.8 232230.4 231280.5 231370.0 232992.6 233590.6
BIC 231672.2 232262.8 231313.0 231402.4 233025.0 233623.0

Therefore, Baengnyeong and Ganghwa monitoring stations can be used as an indicator of par-
ticulate matter concentration for several hours ago in predicting particulate matter in Seoul and its
adjacent areas, which have a population of more than 20 million in metropolitan areas. This effect
suggests that it is likely to be used as a more efficient predictive indicator in a situation in which the
PM10 concentration in Seoul changes rapidly. For example, in a situation where the PM10 concentra-
tion is low and suddenly rises, rather than in a situation in which the PM10 concentration in Seoul does
not change significantly. Particulate matter data have autocorrelation. For example, if we calculate the
autocorrelation coefficient of the Seoul PM10 time series, the autocorrelation is quite high even before
6 hours. In other words, if there is no sudden change in the particulate matter concentration, it means
the index in Seoul PM10 a few hours ago can be a good indicator for predicting the current PM10
concentration in Seoul.

However, we want to prove that this conjecture is correct under the assumption that the PM10
concentration in Baengnyeong can be a preliminary indicator if the particulate matter concentration
in Seoul is very low and suddenly rises vertically after a few hours. Therefore, in this study, we will
examine under what circumstances can we currently predict particulate matter in Seoul using data on
the concentration and precipitation of particulate matter several hours ago observed at Baengnyeong
and Ganghwa meteorological observatory.

3. Methodology

Our method can be broadly divided into two parts. First, the observation data for both Baengnyeong
and Seoul are divided into two groups: (1) data for a while with zero precipitation, and (2) data for a
while with non-zero precipitation. And when we collect data according to the presence or absence of
precipitation for each place, we find the probability distribution that best describes this data.

3.1. Quantile mapping

Quantile mapping was suggested by climatology articles, such as Gudmundsson et al. (2012). The
main idea of quantile mapping came from the generalization of the probability integral transform,
which considered the transformation between a random variable from any continuous distribution
and a standard uniform distribution. Suppose that PM10(B, t) (PM10(S , t)) is the PM10 concentration
distribution function of Baeknyeong (Seoul) station, t-hours before. When t = 0, it refers to the current
PM10 density. According to Gudmundsson et al. (2012), the main goal of the quantile mapping is
finding a transformation function f ,

PM10 (B, t) = f (PM10 (S , t)) .

Suppose that we know distributions of PM10(B, t) and PM10(S , t), denote them as FB,t and FS ,t, which
have each inverse function F−1

B,t and F−1
S ,t . Then, the transformation f is defined as

PM10 (B, t) = F−1
B,t

(
FS ,0 (PM10 (S , 0))

)
. (3.1)
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Figure 3: The extreme mixture modeling of data on Baengnyeong, Seoul, and Ganghwa in spring. Gray bars
represent histograms of the empirical data at each station, red lines are the estimated PDF of the bulk model, and

green lines are the estimated PDF of the tail model.

For the relationship of PM10 concentrations between Ganghwa and Seoul, we can derive a similar
equation. In this paper, based on the idea of quantile mapping, our proposed main idea is that when
the number of data is large, it is plausible to change FB,t and FS ,t to their estimate based on the data,
F̂B,t and F̂S ,t, respectively.

3.1.1. Extreme value mixture models

When it comes to using quantile mapping for the data analysis, it is crucial how to estimate FB,t
and FS. In this paper, we estimate these cumulative functions using extreme value mixture models.
The mixture model referred to here divides the data into non-extreme (called bulk model) and ex-
treme (called tail model) parts to find and model the probability distribution that best describes the
probability density for each part.

Let h(·) be the pdf of the bulk model and g(·) be the pdf of the tail model. And let the parameter
vectors corresponding to the bulk model and the tail model be Θb and Θu, respectively. Then the
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Table 4: Parameter estimation results for the gamma-GPD model

Baengnyeong
102

Seoul
108

Ganghwa
201

Gamma
shape 2.7305 3.5044 2.8989

Gamma
scale 16.6383 15.2893 17.3669

GPD
shape 23.4946 24.8987 25.8975

GPD
scale 0.5629 0.3444 0.3530

aforementioned model can be written as

F (x | Θb,Θu) =

 H (x | Θb) , for x ≤ u,

H (u | Θb) + [1 − H (u | Θb)] G (x | Θu) , for x > u.
(3.2)

At this time, in Equation (3.2), H(·) is the cumulative distribution function (CDF) of the bulk
model, and G(·) is the CDF of the tail model. For example, if the bulk model is a gamma distribution
and the tail model is a generalized Pareto distribution (GPD),Θb is the gamma distribution parameters,
and Θu is the GPD parameters (including u). The probability density function (PDF) version of the
Equation (3.2) is:

f (x | Θb,Θu) =

h (x | Θb) , for x ≤ u,

[1 − H (u | Θb)] g (x | Θu) , for x > u,
(3.3)

where h is the corresponding PDF of the bulk model. In this paper, we consider two popular ex-
treme value mixture models: (i) gamma-GPD and (ii) Weibull-GPD. The PDF and CDF of the gamma
distribution are:

f (x | Θb) =
1

Γ (k) λk xk−1e−
x
λ , F (x | Θb) =

1
Γ (k)

γ
(
k,

x
λ

)
, x ≥ 0, (3.4)

where Θb = (k, λ), k > 0, and λ > 0 are shape and scale parameters of the gamma distribution,
respectively. Γ (γ) is the (incomplete) gamma function. On the other hand, the PDF and CDF of the
Weibull distribution are:

f (x | Θb) =
k
λ

( x
λ

)k−1
e−(

x
λ )

k

, F (x | Θb) = 1 − e−(
x
λ )

k

, x ≥ 0, (3.5)

where Θb = (k, λ), k > 0, and λ > 0 are shape and scale parameters of the Weibull distribution,
respectively. Furthermore, the PDF and CDF of the generalized Pareto distribution are:

f (x | Θu) =
1
σ

(
1 + ξ

x − u
σ

)− 1
ξ+1
, F (x | Θu) = 1 −

(
1 + ξ

x − u
σ

)− 1
ξ

, x ≥ u, (3.6)

whereΘu = (ξ, σ), ξ, and σ > 0 are shape and scale parameters of the generalized Pareto distribution,
respectively. We suggest that u in Equations (3.2) and (3.3) can be selected as 150 (bad-very bad
boundary) or 80 (normal-bad boundary), which has a special meaning as a threshold. Of course, u
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Figure 4: The diagram of the prediction algorithm.

can also be estimated, but it is also complicated. Since we focused on extreme particulate matter, we
selected “u = 80 (normal-bad boundary)” and proceeded with mixture modeling.

In this paper, two famous extreme value mixture models were considered based on the data analy-
sis results: (i) gamma-GPD and (ii) Weibull-GPD. For the extreme value mixture model selection, we
calculated AIC and BIC evaluation scales for the gamma-GPD and Weibull-GPD of mixture models.
In this case, the nllh (negative log-likelihood) value was obtained during the model fitting process, so
the calculation was carried out as in Equation (3.7), and the results are shown in Table 3. Gamma-
GPD showed slightly lower values than Weibull-GPD in all three regions of Baengnyeong, Seoul, and
Ganghwa. Therefore, we selected gamma-GPD as the final mixture model, and Figure 3 shows the
result of the extreme mixture modeling of data on the three regions. Also, Table 4 is the estimated
result of gamma-GPD fitted to the data.

AIC = 2k + 2nllh, and BIC = kln (n) + 2nllh. (3.7)

3.1.2. Quantile generalized additive model

Since the concentration of particulate matter is expected to change according to the amount of
precipitation in a situation where the amount of precipitation is not 0, we expect that more precise
modeling can be performed by performing quantile regression analysis by setting the explanatory vari-
able X as the precipitation amount and the response variable Y as the particulate matter concentration.
Here, we assume a nonlinear relationship between precipitation and particulate matter concentration
and then use the quantile generalized additive model of Fasiolo et al. (2020), which can be modeled
more flexibly than the conventional quantile regression analysis.

The quantile generalized additive model equation is that:

qτ
( √

PM10,i | Precipitationi

)
= f

( √
Precipitationi

)
+ εi, (3.8)

where qτ(y|x) is a τth conditional quantile function of y given x, and f is a sufficiently flexible function
to represent nonlinear behavior of the data, εi an independent and identically distributed (i.i.d.) Gaus-
sian error of the ith data. The variable transformation was applied to reduce the range of the x-axis.
Log transformation is generally used a lot, but we used square root transformation because there are
times when PM10 and precipitation are zero in our data. In addition, when analyzing the results, the
square was taken again so that there was no error in the calculation.

Quantile generalized additive modeling for this data analysis was summarized as (1) Set a se-
quence of τ vector, τ, which is from 0.01 to 0.99, by changing 0.01, that is, τ = 0.01, 0.02, . . . , 0.99.
(2) Fit a sequence of quantile generalized additive model, we use mqgam function in R qgam package.
(Fasiolo et al., 2020) For estimation, we use a shrinkage version of the cubic regression splines.
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3.1.3. Prediction algorithm

We have Baengnyeong data from t-time ago, and we want to predict the concentration of particu-
late matter in Seoul at present through this. Although we don’t know the concentration of particulate
matter in Seoul, it is assumed that we know the amount of precipitation and whether it rains at the
time. Then the whole algorithm is done in the following form and is visually identifiable in Figure 4.

1. Observe the PM10 concentration of Baengnyeong before t hours.

2. Check whether precipitation exists in the data of Baengnyeong before t-time.

(a) When it is raining in the Baengnyeong area (when there is not much extreme particulate
matter), the relative degree of quantiles is measured by performing a quantile generalized
additive model between precipitation and particulate matter.

(b) When it is not raining in the Baengnyeong area (when there is a lot of extreme particulate
matter), in this case, the empirical quantile of particulate matter observed in the Baengnyeong
area is calculated using the appropriate result with the gamma-GPD model mentioned above.

3. Check whether precipitation exists in the data of the current Seoul.

(a) When it is raining in the Seoul area (when there is not much extreme particulate matter), the
relative degree of quantiles is measured by performing a quantile generalized additive model
between precipitation and particulate matter.

(b) When it is not raining in the Seoul area (when there is a lot of extreme particulate matter),
the empirical quantile of particulate matter observed in the Seoul area is calculated using the
appropriate estimation result using the gamma-GPD model we mentioned above.

4. Predict the PM10 concentration in Seoul under the assumption that the calculated quantiles for each
station will remain the same in the Seoul area after a few hours.

4. Simulation study

In this section, we compare the effect of the proposed algorithm via a simulation study. The sim-
ulation study aims to check that our algorithm could produce reasonable predictions under similar
simulated datasets. In this study, we generate a set of artificial time series. In addition, we assume that
there are no rainfall effects on the simulated dataset for simplicity.

We briefly introduce the basic simulated setting. We generate two time series of 500 observations
at each iteration, called A and B. Figure 5 shows the scatter plot of one simulated data. In this setting,
signal A has a similar role to Baengnyeong station, and signal B has a similar role to Seoul station.
Therefore, in the simulation study, we could measure how the information of station A can be affected
by the precise prediction of observations in B.

Simulated data are constructed by reflecting similarities of the real dataset. Let X(A, t) be the
simulated value at location A and time t. Then, X(A, t) are generated by following equation:

X (A, t) = a × [c + m (t) + ε (A, t)] , (4.1)

where a = 2.5 is an inflation factor, and c = 20 is a constant to generate similar data to real PM10, re-
spectively. ε(A, t) are generated in two ways: (i) independent and identically distributed (i.i.d.) normal
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Figure 5: Time series of the simulated data. Our goal is to make a prediction model of a black signal using
t − 6 hours before signals of red and black. Skyblue dots are the actual time series of Baeknyeong station from
April 1, 2018, to April 22, 2018. For comparison, we added 30 for each real data observation. The green dashed
line shows indicators to divide the whole times series into train and test sets. The yellow dashed line means the

threshold for the construction of a gamma-GPD model.

random variables with constant variance, i.e., ε(A, t) ∼ N(0, σ2) or (ii) AR(1) model with parameter
0.5. m(t) is a combination of extreme value signals. Especially, m(t) is generated by Laplace densities:

m (t) =

nm∑
i=1

mi (t) , mi (t) = 100
√

fL (t | , µi, 8bi), (4.2)

where fL(t|, µi, 8bi) is a density function of Laplace distribution with location parameter µi and scale
parameter 8bi. µ1, µ2, . . . , µnm are generated by discrete uniform distribution from [1, 500] with satis-
fying mini, j |µi − µ j| ≥ 50. bi are independently generated from a beta distribution with parameters
(2, 5). Let X(B, t) be the simulated value at location B and time t. X(B, t) are generated in the same
way:

X (B, t) = a × [c + m (t + 6) + ε (B, t)] . (4.3)

Although our simulation data generation setting is not intuitive, simulated signals are similar to the
original PM10 data, shown in Figure 5.

For comparison, we used the conventional vector autoregressive (vector AR) model. Suppose that
we have two time series {X(A, t)} and {X(B, t)}. From Woodward et al. (2022), the VAR(p) is defined
by followings:(
X(A, t − 6)
X(B, t − 6)

)
=

(
βA

βB

)
+

(
φAA(1) φAB(1)

φBA(1) φBB(1)

) (
X(A, t − 7)
X(B, t − 7)

)
+ · · · +

(
φAA(p) φAB(p)

φBA(p) φBB(p)

) (
X(A, t − 6 − p)
X(B, t − 6 − p)

)
+

(
e(A, t − 6)
e(B, t − 6)

)
,

(4.4)
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Table 5: Simulation study results

Data type Mean (Abs. Diff.)
(Std. Dev.)

nm = 3 nm = 5
σ = 1.5 σ = 2 AR, σ = 1.5 AR, σ = 2 σ = 1.5 σ = 2 AR, σ = 1.5 AR, σ = 2

Whole

Proposed 4.400
(0.2437)

5.7573
(0.2657)

5.0227
(0.3025)

6.6600
(0.5056)

4.3409
(0.2426)

5.7328
(0.2349)

5.0236
(0.3243)

6.6005
(0.3333)

VAR 5.4883
(1.2144)

6.6399
(1.5398)

13.0132
(2.8471)

14.4584
(2.9995)

5.8915
(1.6927)

7.1600
(1.8666)

14.1104
(3.7483)

14.0732
(2.5950)

Extreme values

Proposed 5.6121
(1.0072)

7.2143
(0.9208)

6.5190
(1.0947)

8.8583
(2.2644)

5.0317
(0.9753)

6.4694
(0.8959)

5.8563
(1.2412)

7.6711
(1.2622)

VAR 11.5747
(12.0698)

13.5523
(9.3516)

32.4455
(11.5835)

39.5570
(70.9901)

14.5413
(12.0444)

21.3550
(25.4140)

39.5938
(25.4946)

39.1815
(19.4816)

Non-Extreme values

Proposed 4.0940
(0.1920)

5.3891
(0.2437)

4.6439
(0.2602)

6.1833
(0.3914)

4.1659
(0.1907)

5.5471
(0.2387)

4.8143
(0.2619)

6.3345
(0.3396)

VAR 3.4989
(0.3410)

4.4424
(0.3844)

5.7262
(2.0488)

7.633
(2.0708)

3.7844
(0.5623)

4.8470
(0.4651)

7.1897
(2.0994)

8.1849
(2.0752)

where βA and βB are intercepts, φ is a time-invariant constant, and e denotes an error term. Our goal
is to make a 6-time ahead prediction X̂(B, t). Since it barely works in i.i.d. error setting, we used a
modified version of VAR model with additional informaton of X(B, t), . . . , X(B, t−5) for the prediction
in i.i.d. error setting:

(
X(A, t − 6)

X(B, t)

)
=

(
βA

βB

)
+

(
φAA(1) φAB(1)

φBA(1) φBB(1)

) (
X(A, t − 7)
X(B, t − 1)

)
+ · · · +

(
φAA(p) φAB(p)

φBA(p) φBB(p)

) (
X(A, t − 6 − p)

X(B, t − p)

)
+

(
e(A, t − 6)

e(B, t)

)
.

(4.5)

In this setting, we just do 1-time ahead prediction X̂(B, t + 1). For more information about the vector
AR model, see Woodward et al. (2022). In VAR(p) model, an appropriate selection of time lag p
is such a difficult task. In this paper, we consider all VAR(1),VAR(2), . . . ,VAR(p) predictions and
choose the prediction which gives the most similar prediction value compared to true X(B, t) at each
t.

In this simulation study, 400 observations are used for model construction, and the remaining 100
observations are used for model performance evaluation using absolute value difference computation.

Mean absolute difference =

∑nt
t=1

∣∣∣X (B, t) − X̂ (B, t)
∣∣∣

nt
, (4.6)

where X̂(B, t) is the estimated value from the proposed or VAR approach, and nt denotes the number
of observations in the test set. In the proposed model, we used we set the threshold u = 0.8 empirical
quantile of observations to distinguish between gamma and GPD mixture. We also use the threshold
u to distinguish values in the test set into two parts: Extreme values (observations above u) and non-
extreme values (observations below u).

Table 5 summarizes the simulation study results. From the simulation study results, we found that
when the variance of the error term is small or the number of extreme value signals is large, then the
proposed method gives a lower absolute difference compared to the VAR approach. When we consider
non-extreme values in the test set, the VAR method also gives lower mean absolute difference values.
However, for extreme values in the test set, the proposed method give good series of predictions. This
result supports that the proposed method is a good way to choose when there are a few sharp changes
in the series.
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Figure 6: (a) Prediction error (absolute difference between the predicted value and actual value) according to a
time lag of Baengnyeong-Seoul region. (b) Forecast error according to a time lag in the Ganghwa-Seoul region.

5. Real data analysis

The following results were based on the data of (a) Baengnyeong-Seoul and (b) Ganghwa-Seoul,
respectively, and the absolute value of the difference between the predicted and actual values whether
the data on particulate matter and precipitation a few hours ago in the front location was the best fit
for the prediction of the concentration of particulate matter in the back location.

Figure 6 is the output of prediction error figures according to the time lag change in (a) the
Baengnyeong-Seoul region and (b) the Ganghwa-Seoul region. To check whether it is meaningful
to make a model separately considering the amount of precipitation, a version without consideration
of the presence of precipitation was created. As can be seen from the results, it was the most accurate
to predict the current concentration of particulate matter in Seoul using data on particulate matter and
precipitation in Baengnyeong 6 hours ago. Similarly, a difference of about 1 hour between Ganghwa
and Seoul was the best way to increase the prediction accuracy. On the other hand, in all cases except
for the case where the time lag of the Baengnyeong-Seoul region was 7, our model, which was fitted
considering the amount of precipitation, presented a result closer to the actual value. Judging from the
results, it can be said that it is more reasonable to make a model considering the presence or absence
of precipitation.

It is the output of the Figure 7 that the prediction power of (a) Baeknyeong-Seoul (6 hours dif-
ference) and (b) Ganghwa-Seoul (1-hour difference). The observed difference shows the difference
in particulate matter concentration in Seoul 6 hours before and at the predicted time in (a), and the
difference in Seoul particulate matter concentration between 1 hour before and at the predicted time
in (b). The red line is the difference between the predicted value and the actual value through our pro-
posed method and represents the average of the difference between the predicted value and the actual
value of the proposed method in a situation where the observed difference ±5µg/m3 calculated and
printed. For comparison, we also compute the result of the VAR approach used in Section 4, shown
in the green line. If the Seoul particulate matter concentration 6 hours or 1 hour ago is used to predict
the Seoul particulate matter concentration at present, the prediction error will be the same as the black
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Figure 7: (a) Prediction error according to the obs mean difference in the Baengnyeong-Seoul region. (b) The
figure of prediction error according to obs mean difference of Ganghwa-Seoul region.

line (reference). When the observed difference is small, that is, when the concentration of particulate
matter in Seoul is constant to some extent, the proposed method does not have much benefit, but as
this difference increases, the red line in the Figure 7 goes below the reference line. It can be judged
that our method is effective as a prediction method when there is a sharp change in the concentration
of particulate matter in Seoul.

6. Conclusions and further works

In this paper, we suggested a new and simple algorithm for the prediction of the PM10 concentra-
tion in Seoul based on the weather and PM10 observation result in nearby air condition monitoring
stations. The proposed prediction algorithm was based on the application of quantile mapping, which
is a generalization of the probability integral transform. To describe the heavy-tail PM10 density, we
used a gamma-GPD extreme value mixture model. To evaluate the effect of the amount of precipita-
tion on the PM10 density, we used the quantile GAM. We showed that the proposed prediction method
gives better prediction especially when there are sharp changes of PM10 density in Seoul. Through this
study, PM10 information in the Baengnyeong area can help predict particulate matter in Seoul, and it
was possible to measure the effect of precipitation on the concentration of particulate matter. Although
the correlation between particulate matter in Baengnyeong 6 hours ago and particulate matter in Seoul
was lower than the correlation between particulate matter in Seoul 6 hours ago and particulate matter
in Seoul now, this is because the effect is large when there is no rapid change in particulate matter
concentration. So it showed that particulate matter from Baengnyeong 6 hours ago can be used as an
index for predicting particulate matter concentration in Seoul when there is a rapid change in partic-
ulate matter concentration. Likewise, the correlation between particulate matter in Ganghwa an hour
ago and particulate matter in Seoul was lower than that of particulate matter in Seoul 1 hour ago, but
when there is a sharp change in particulate matter concentration in Seoul, it can be used as an indicator
for predicting particulate matter concentration in Seoul.

However, there are some points for a better understanding of the prediction of extreme PM10
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in Korea. Since this method only considered PM10 densities and the amount of precipitation, other
components are also related to the prediction of PM10 densities, such as wind speed, urbanization
index, etc. So, there are many variations in the data that cannot be explained by this method. In the
future, it is necessary to create a more sophisticated high-concentration particulate matter prediction
technique in combination with a complex physical model, which we will leave as a further study.
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