• Title/Summary/Keyword: precipitation data

Search Result 1,942, Processing Time 0.029 seconds

Application of Meteorological Drought Index using Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) Based on Global Satellite-Assisted Precipitation Products in Korea (위성기반 Climate Hazards Group InfraRed Precipitation with Station (CHIRPS)를 활용한 한반도 지역의 기상학적 가뭄지수 적용)

  • Mun, Young-Sik;Nam, Won-Ho;Jeon, Min-Gi;Kim, Taegon;Hong, Eun-Mi;Hayes, Michael J.;Tsegaye, Tadesse
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.2
    • /
    • pp.1-11
    • /
    • 2019
  • Remote sensing products have long been used to monitor and forecast natural disasters. Satellite-derived rainfall products are becoming more accurate as space and time resolution improve, and are widely used in areas where measurement is difficult because of the periodic accumulation of images in large areas. In the case of North Korea, there is a limit to the estimation of precipitation for unmeasured areas due to the limited accessibility and quality of statistical data. CHIRPS (Climate Hazards Group InfraRed Precipitation with Stations) is global satellite-derived rainfall data of 0.05 degree grid resolution. It has been available since 1981 from USAID (U.S. Agency for International Development), NASA (National Aeronautics and Space Administration), NOAA (National Oceanic and Atmospheric Administration). This study evaluates the applicability of CHIRPS rainfall products for South Korea and North Korea by comparing CHIRPS data with ground observation data, and analyzing temporal and spatial drought trends using the Standardized Precipitation Index (SPI), a meteorological drought index available through CHIRPS. The results indicate that the data set performed well in assessing drought years (1994, 2000, 2015 and 2017). Overall, this study concludes that CHIRPS is a valuable tool for using data to estimate precipitation and drought monitoring in Korea.

Sensitivities of WRF Simulations to the Resolution of Analysis Data and to Application of 3DVAR: A Case Study (분석자료의 분해능과 3DVAR 적용에 따른 WRF모의 민감도: 사례 연구)

  • Choi, Won;Lee, Jae Gyoo;Kim, Yu-Jin
    • Atmosphere
    • /
    • v.22 no.4
    • /
    • pp.387-400
    • /
    • 2012
  • This study aims at examining the sensitivity of numerical simulations to the resolution of initial and boundary data, and to an application of WRF (Weather Research and Forecasting) 3DVAR (Three Dimension Variational data Assimilation). To do this, we ran the WRF model by using GDAS (Global Data Assimilation System) FNL (Final analyses) and the KLAPS (Korea Local Analysis and Prediction System) analyses as the WRF's initial and boundary data, and by using an initial field made by assimilating the radar data to the KLAPS analyses. For the sensitivity experiment, we selected a heavy rainfall case of 21 September 2010, where there was localized torrential rain, which was recorded as 259.5 mm precipitation in a day at Seoul. The result of the simulation using the FNL as initial and boundary data (FNL exp) showed that the localized heavy rainfall area was not accurately simulated and that the simulated amount of precipitation was about 4% of the observed accumulated precipitation. That of the simulation using KLAPS analyses as initial and boundary data (KLAPC exp) showed that the localized heavy rainfall area was simulated on the northern area of Seoul-Gyeonggi area, which renders rather difference in location, and that the simulated amount was underestimated as about 6.4% of the precipitation. Finally, that of the simulation using an initial field made by assimilating the radar data to the KLAPS using 3DVAR system (KLAP3D exp) showed that the localized heavy rainfall area was located properly on Seoul-Gyeonggi area, but still the amount itself was underestimated as about 29% of the precipitation. Even though KLAP3D exp still showed an underestimation in the precipitation, it showed the best result among them. Even if it is difficult to generalize the effect of data assimilation by one case, this study showed that the radar data assimilation can somewhat improve the accuracy of the simulated precipitation.

An Uncertainty Assessment for Annual Variability of Precipitation Simulated by AOGCMs Over East Asia (AOGCM에 의해 모의된 동아시아지역의 강수 연변동성에 대한 불확실성 평가)

  • Shin, Jinho;Lee, Hyo-Shin;Kim, Minji;Kwon, Won-Tae
    • Atmosphere
    • /
    • v.20 no.2
    • /
    • pp.111-130
    • /
    • 2010
  • An uncertainty assessment for precipitation datasets simulated by Atmosphere-Ocean Coupled General Circulation Model (AOGCM) is conducted to provide reliable climate scenario over East Asia. Most of results overestimate precipitation compared to the observational data (wet bias) in spring-fall-winter, while they underestimate precipitation (dry bias) in summer in East Asia. Higher spatial resolution model shows better performances in simulation of precipitation. To assess the uncertainty of spatiotemporal precipitation in East Asia, the cyclostationary empirical orthogonal function (CSEOF) analysis is applied. An annual cycle of precipitation obtained from the CSEOF analysis accounts for the biggest variability in its total variability. A comparison between annual cycles of observed and modeled precipitation anomalies shows distinct differences: 1) positive precipitation anomalies of the multi-model ensemble (MME) for 20 models (thereafter MME20) in summer locate toward the north compared to the observational data so that it cannot explain summer monsoon rainfalls across Korea and Japan. 2) The onset of summer monsoon in MME20 in Korean peninsula starts earlier than observed one. These differences show the uncertainty of modeled precipitation. Also the comparison provides the criteria of annual cycle and correlation between modeled and observational data which helps to select best models and generate a new MME, which is better than the MME20. The spatiotemporal deviation of precipitation is significantly associated with lower-level circulations. In particular, lower-level moisture transports from the warm pool of the western Pacific and corresponding moisture convergence significantly are strongly associated with summer rainfalls. These lower-level circulations physically consistent with precipitation give insight into description of the reason in the monsoon of East Asia why behaviors of individually modeled precipitation differ from that of observation.

Development of Machine Learning Based Precipitation Imputation Method (머신러닝 기반의 강우추정 방법 개발)

  • Heechan Han;Changju Kim;Donghyun Kim
    • Journal of Wetlands Research
    • /
    • v.25 no.3
    • /
    • pp.167-175
    • /
    • 2023
  • Precipitation data is one of the essential input datasets used in various fields such as wetland management, hydrological simulation, and water resource management. In order to efficiently manage water resources using precipitation data, it is essential to secure as much data as possible by minimizing the missing rate of data. In addition, more efficient hydrological simulation is possible if precipitation data for ungauged areas are secured. However, missing precipitation data have been estimated mainly by statistical equations. The purpose of this study is to propose a new method to restore missing precipitation data using machine learning algorithms that can predict new data based on correlations between data. Moreover, compared to existing statistical methods, the applicability of machine learning techniques for restoring missing precipitation data is evaluated. Representative machine learning algorithms, Artificial Neural Network (ANN) and Random Forest (RF), were applied. For the performance of classifying the occurrence of precipitation, the RF algorithm has higher accuracy in classifying the occurrence of precipitation than the ANN algorithm. The F1-score and Accuracy values, which are evaluation indicators of the classification model, were calculated as 0.80 and 0.77, while the ANN was calculated as 0.76 and 0.71. In addition, the performance of estimating precipitation also showed higher accuracy in RF than in ANN algorithm. The RMSE of the RF and ANN algorithms was 2.8 mm/day and 2.9 mm/day, and the values were calculated as 0.68 and 0.73.

Conversion Factor Estimates between the Rain Data per Minute and Fixed-Time-Interval (분단위 강우자료를 활용한 임의-고정시간 환산계수의 추정)

  • Moon, Young-Il;Oh, Tae-Suk;Oh, Kun-Taek;Jun, Si-Young
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.679-682
    • /
    • 2008
  • Probability precipitation is one of the most important factor for designing the hydrology structures. Probability precipitation is calculated based on the frequency analysis on each durations of annual maximum rainfall data. For frequency analysis we need a conversion factor between the rain data per random-time interval and fixed-time-interval. In this study, the minutely precipitation data on observatory of the Meteorological Administration are used for 37 stations. Therefore, we should conversion factors between the rain data per minute and fixed-time-interval.

  • PDF

EVALUATION OF AN ENHANCED WEATHER GENERATION TOOL FOR SAN ANTONIO CLIMATE STATION IN TEXAS

  • Lee, Ju-Young
    • Water Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.47-54
    • /
    • 2004
  • Several computer programs have been developed to make stochastically generated weather data from observed daily data. But they require fully dataset to run WGEN. Mostly, meterological data frequently have sporadic missing data as well as totally missing data. The modified WGEN has data filling algorithm for incomplete meterological datasets. Any other WGEN models have not the function of data filling. Modified WGEN with data filling algorithm is processing from the equation of Matalas for first order autoregressive process on a multi dimensional state with known cross and auto correlations among state variables. The parameters of the equation of Matalas are derived from existing dataset and derived parameters are adopted to fill data. In case of WGEN (Richardson and Wright, 1984), it is one of most widely used weather generators. But it has to be modified and added. It uses an exponential distribution to generate precipitation amounts. An exponential distribution is easier to describe the distribution of precipitation amounts. But precipitation data with using exponential distribution has not been expressed well. In this paper, generated precipitation data from WGEN and Modified WGEN were compared with corresponding measured data as statistic parameters. The modified WGEN adopted a formula of CLIGEN for WEPP (Water Erosion Prediction Project) in USDA in 1985. In this paper, the result of other parameters except precipitation is not introduced. It will be introduced through study of verification and review soon

  • PDF

Analysis of bias correction performance of satellite-derived precipitation products by deep learning model

  • Le, Xuan-Hien;Nguyen, Giang V.;Jung, Sungho;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.148-148
    • /
    • 2022
  • Spatiotemporal precipitation data is one of the primary quantities in hydrological as well as climatological studies. Despite the fact that the estimation of these data has made considerable progress owing to advances in remote sensing, the discrepancy between satellite-derived precipitation product (SPP) data and observed data is still remarkable. This study aims to propose an effective deep learning model (DLM) for bias correction of SPPs. In which TRMM (The Tropical Rainfall Measuring Mission), CMORPH (CPC Morphing technique), and PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks) are three SPPs with a spatial resolution of 0.25o exploited for bias correction, and APHRODITE (Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation) data is used as a benchmark to evaluate the effectiveness of DLM. We selected the Mekong River Basin as a case study area because it is one of the largest watersheds in the world and spans many countries. The adjusted dataset has demonstrated an impressive performance of DLM in bias correction of SPPs in terms of both spatial and temporal evaluation. The findings of this study indicate that DLM can generate reliable estimates for the gridded satellite-based precipitation bias correction.

  • PDF

Stochastic precipitation modeling based on Korean historical data

  • Kim, Yongku;Kim, Hyeonjeong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1309-1317
    • /
    • 2012
  • Stochastic weather generators are commonly used to simulate time series of daily weather, especially precipitation amount. Recently, a generalized linear model (GLM) has been proposed as a convenient approach to fitting these weather generators. In this paper, a stochastic weather generator is considered to model the time series of daily precipitation at Seoul in South Korea. As a covariate, global temperature is introduced to relate long-term temporal scale predictor to short-term temporal predictands. One of the limitations of stochastic weather generators is a marked tendency to underestimate the observed interannual variance of monthly, seasonal, or annual total precipitation. To reduce this phenomenon, we incorporate time series of seasonal total precipitation in the GLM weather generator as covariates. It is veri ed that the addition of these covariates does not distort the performance of the weather generator in other respects.

Interpretation of Analytical Data of Ion Components in Precipitation, Seoul (서울 地域 降水中 이온成分 分析資料의 解析)

  • 강공언;이주희;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.3
    • /
    • pp.323-332
    • /
    • 1996
  • Precipitation samples were collected by the wet-only sampling method at Seoul from September 1993 to June 1995. Sample were analysed for the anions $(NO_3^-, NO_2^-, SO_4^{2-}, Cl^-, and F^-)$ and cations $(Na^+, K^+, Ca^{2+}, Mg^{2+}, and NH_4^+)$ in addition to pH and electric conductivity. In order to establish the chemical analysis data of high quality, the assurance checks for analytical data of precipitation were performed by considering the ion balance and by comparing the measured conductivity with the calculated conductivity. As we applied the various assurance checking methods by the ion balance used until recently to a data set measured in this study, the f value expressed as $\Sigma C/\Sigma A$ was found to be not appropriate for the data screening. Also, the scattering plot between cations and anions in each sample was found to show the general tendency of ion balance but was proved to not quantitate the standard of data screening at a data set of samples of various concentration levels. The h value defined as (A-C)/C for C $\geq$ A and (A-C)/A for C < A was used to check the ion balance. However, the standard of data screening by h value must very in response to total ion concentration of samples. In this study, the quality assurance of chemical analysis data was checked by considering both the ion balance of evaluating by h value and the conductivity balance. Further the quality control was achieved by these quality assurance methods. As the result, 67 samples among total 77 were obtained as valid. As the central tendency value for a statistical summary in the analytical parametr of samples, the volume-weighted mean value was found to represent more the general chemistry of precipitation rather than the arithmetic mean. The volume-weighted mean pH was 5.0 and 25% of samples was less than this mean. The concentrations of sufate and nitrate in precipitation were 90.4 ueq/L and 32.4 ueq/L which made up 59% and 21% of all anions. The raion of $SO_4^{2-}/(NO_3^- + NO_2^-)$ in precipitation was 2.7, which indicates that the contributions of $H_2SO_4$ and $HNO_3$ to the acidity of precipitation are 70% and 30%, respectively.

  • PDF

The Correlation between Groundwater Level and Moving Average of Precipitation in Nakdong River Watershed (낙동강유역의 지하수위와 강우이동평균의 상관관계)

  • Yang, Jeong-Seok;Ahn, Tae-Yeon
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.507-510
    • /
    • 2007
  • The correlation between groundwater level(GWL) and the moving average of precipitation was analyzed based on the observation data in Nakdong river watershed. The precipitation data was compared and analyzed with the GWL data from adjacent observation point to the precipitation gauge station. The correlation between the moving average of precipitation with several averaging periods and GWL were analyzed and we could choose the averaging period that produces maximum correlation. A severe drawdown was observed from December to April. The maximum correlations between GWL and the moving average of precipitation were occurred from 20-day to 80-day averaging period.