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Abstract

Stochastic weather generators are commonly used to simulate time series of daily
weather, especially precipitation amount. Recently, a generalized linear model (GLM)
has been proposed as a convenient approach to fitting these weather generators. In this
paper, a stochastic weather generator is considered to model the time series of daily
precipitation at Seoul in South Korea. As a covariate, global temperature is introduced
to relate long-term temporal scale predictor to short-term temporal predictands. One of
the limitations of stochastic weather generators is a marked tendency to underestimate
the observed interannual variance of monthly, seasonal, or annual total precipitation.
To reduce this phenomenon, we incorporate time series of seasonal total precipitation
in the GLM weather generator as covariates. It is verified that the addition of these
covariates does not distort the performance of the weather generator in other respects.

Keywords: Generalized linear model, overdispersion, precipitation, stochastic weather
generator.

1. Introduction

Stochastic weather generators constitute one technique to temporally downscale such cli-
mate information. They are commonly used to simulate time series of daily weather, espe-
cially minimum and maximum temperature and precipitation amount (Wilks and Wilby,
1999). Among other things, these models constitute one technique to produce sequences
of daily weather consistent with seasonal climate forecasts or longer-term climate change
projections (Maraun et al., 2010; Wilks, 2010). For example, scenarios of daily weather are
needed consistent with projected variations in climate.

The recently introduced approach for stochastic weather generators, based generalized lin-
ear modeling (GLM), is convenient for this purpose, especially with covariates to account for
seasonality and teleconnections with the El Niño-Southern Oscillation phenomenon (McCul-
lagh and Nelder, 1989; Furrer and Katz, 2007). Yet one important limitation of stochastic
weather generators is a marked tendency to underestimate the observed interannual variance
of seasonally aggregated variables (e.g., Buishand, 1978; Katz and Parlange, 1998). Such a
thing is especially pronounced for precipitation. This behavior of a statistical model relative
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to the data is termed the “overdispersion” phenomenon. It is not clear the extent to which
this phenomenon is attributable to an inadequate model for weather variation, as opposed
to a failure to take into account climate variation (Katz and Zheng, 1999).

To reduce the overdispersion phenomenon, Kim et al. (2012) incorporated time series
consisting of seasonal total precipitation and seasonal mean minimum and maximum tem-
perature into the GLM weather generator as additional covariates. These seasonal time series
are smoothed using locally weighted scatterplot smoothing (LOESS; Cleveland, 1979; Hastie
and Tibshirani, 1990) to avoid introducing underdispersion. It should be noted that Wilks
(1989) conditioned a stochastic model for daily precipitation on monthly total precipitation,
and that Hansen and Mavromatis (2001) adjusted the parameters of a stochastic weather
generator in an ad hoc fashion to correct for overdispersion. In the present paper, a stochas-
tic weather generator is considered to model the time series of daily precipitation at Seoul
in South Korea. A similar approach is adopted to reduce overdispersion phenomenon.

In Section 2, the basic GLM approach to stochastic weather generators is briefly reviewed,
and then the extension involving the introduction of aggregated climate statistics as covari-
ates is treated. In Section 3, these models are fitted to time series of daily precipitation at
Seoul, evaluating the model fit in terms of overdispersion (Section 3). Section 4 consists of
a discussion.

2. GLM weather generator

2.1. Basic model

The GLM approach to stochastic weather generators introduced by Furrer and Katz (2007)
focuses on the simplest form of generator first proposed by Richardson (1981). Here we only
briefly describe this basic GLM weather generator, referring to for more details (also see
http://www.image.ucar.edu/˜eva/GLMwgen/). The precipitation occurrence and intensity
components of the GLM stochastic weather generator of Furrer and Katz (2007) are essen-
tially the same as in Stern and Coe (1984), who modeled daily precipitation amount as a
chain-dependent process, with annual cycles in the parameters, using GLM. Here golobal
temperature is used as a covariate instead of the El Niño phenomenon, unlike in Furrer and
Katz (2007).

Let Jt denote the precipitation occurrence state on day t of a given year (i.e., Jt = 1 if
precipitation occurs, Jt = 0 otherwise), and let pt = P{Jt = 1}, t = 1, 2, . . ., denote the
probability of a wet day. Equivalent to a first-order, two-state Markov chain, the probability
of precipitation is modeled conditional on the occurrence state on the previous day Jt−1:

ln

(
pt

1− pt

)
= µ+ αJt−1 + β1Ct + β2St + β3Gt + γ1CtJt−1 + γ2StJt−1, (2.1)

where Ct = cos(2π(t− 181)/365), St = sin(2π(t− 181)/365) and Gt is monthly global tem-
perature (land and ocean combined into an anomaly) index. Here the coefficient α permits
the conditional probability of precipitation to shift depending on whether or not precipi-
tation occurred on the previous day, β1 and β2 determine the phase and amplitude of the
sine wave for the annual cycle in these conditional probabilities, β3 explains the effect of
global warming, and γ1 and γ2 allow this annual cycle to be separate for the two conditional



Stochastic precipitation modeling based on Korean historical data 1311

probabilities. Note that the (t − 181) term is used to make the estimates consistent with
those in Furrer and Katz (2007).

The daily precipitation intensity (i.e., precipitation amount conditional on Jt = 1) is
modeled as a gamma distribution (e.g., Stern and Coe, 1984), with an annual cycle in the
form of a sine wave for mean intensity, denoted by µt:

ln(µt) = µ+ β1Ct + β2St. (2.2)

Here the coefficients β1 and β2 determine the phase and amplitude of the sine wave for
the annual cycle in the mean intensity.

2.2. Model with aggregated covariates

As mentioned in the introduction, downscaling techniques have emerged as an efficient
means of generating more realistic weather scenarios for impact assessments. How to link
the larger scale to the smaller scale provides the opportunity to account for our under-
standing of the relationships and interaction between the two disparate scale processes.
Downscaling makes use of the relationship between the meso- or larger scale atmospheric or
oceanic predictor variables and station-scale meteorological variables (e.g., Benestad et al.,
2008; Katz and Parlange, 1998; Mehrotra et al., 2004). Statistical downscaling relies on the
principle that there is necessarily a close relationship between the climate at the large scale
and the weather at the local scale.

Kim et al. (2012) considered LOESS smoothed seasonal climate statistics as covariates
in the GLM weather generator to introduce enough noise into the daily weather statistics
and result in “underdispersion”. The basis of their approach is to relate long-term tempo-
ral scale predictor variables to short-term temporal scale predictands. For example, indices
of large-scale atmospheric or oceanic circulation, such as the El Niño-Southern Oscillation
(ENSO) phenomenon or global temperature, can be used as covariates in the daily precip-
itation model. Instead, here we incorporate time series of seasonal climate statistics in the
GLM weather generator as covariates in the manner of disaggregation. That is, seasonal
total precipitation is used as predictor variable for the model predictands consisting of daily
precipitation. Retaining global temperature as a covariate as well would make the inter-
pretation of the model more difficult, as well as complicating the use of the model in the
statistical downscaling of seasonal forecasts. Our approach still indirectly takes into account
the effects of global temperature on daily weather statistics, because of the well established
global temperature in these aggregated climate statistics in the South Korea.

As will be seen, using the observed (i.e., unsmoothed) seasonal climate statistics as co-
variates may introduce excessive noise into the daily weather statistics and result in “under-
dispersion” for aggregated climate statistics. Thus, we consider smoothed seasonal climate
statistics as covariates in the GLM weather generator, and adopt LOESS as a smoothing tool
(Cleveland, 1979). LOESS combines much of the simplicity of linear least squares regression
with the flexibility of nonlinear regression, and is descriptively known as locally weighted
polynomial regression. LOESS is a computationally intensive method, requires fairly large,
densely sampled data sets in order to produce good models, and does not produce a re-
gression function easily represented by a mathematical formula. Nevertheless, it is a very
simple and flexible procedure and resistant to outliers (e.g., LOESS does not require the
specification of a function to fit a model to all of the data except for a smoothing parameter
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value and the degree of the local polynomial: here we use 0.8 for the degree of smoothing
and two for the degree of the local polynomials, see Figure 2.1).

Formally, our approach involves introducing LOESS smoothed seasonally aggregated cli-
mate statistics into the basic GLM weather generators specified by (2.1)-(2.2) as follows:

ln

(
pt

1− pt

)
= µ+αJt−1+β1Ct+β2St+γ1CtJt−1+γ2StJt−1+βsItP

S
t +βw(1−It)PW

t (2.3)

ln(µt) = µ+ β1Ct + β2St + βsItP
S
t + βw(1− It)PW

t (2.4)

where It is a seasonal indicator (i.e., It = 1 in summer (April-September) and It = 0 in
winter (October-March)) and PS and PW LOESS smoothed summer and winter seasonal
total precipitation. Note that the summer and winter time series are smoothed separately.
The seasonal indicators in (2.3)-(2.4) allows for different relationships with the aggregated
covariates depending on the season. The degree of LOESS smoothing is determined by
the criterion based on minimizing the overdispersion phenomenon, through trial and error
ranging from the case of no smoothing to as smooth as possible. Note that the overdispersion
results are not very sensitive to the value of this smoothing parameter.
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Figure 2.1 Optimal smoothed aggregated covariates of total precipitation during summer (left) and
winter (right) seasons. Dashed lines: corresponding observed values of the data series.

3. Fit of GLM weather generator to data

The data used in this study are the daily observations of the precipitation at Seoul for
the period 1961-2011 given by Korea Meteorological Administration (KMA). The annual
precipitation cycle in this region has a clear maximum in late spring and summer and a
marked winter minimum.

Table 3.1 lists the parameter estimates and standard errors, obtained through repeated
application of the“glm” function in the open source software R. Each covariate category is
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statistically significant except for interaction terms (dispersion parameter for binomial family
and Gamma family are taken to be 1 and 2.572, respectively). Note that in precipitation
models for convenience to make the results easy to present in a compact format, daily mean
rate is used as a covariate instead of precipitation total at Seoul.

Furrer and Katz (2007) already mentioned that this form of GLM stochastic weather gen-
erator underestimates the observed standard deviation of annual and summer (i.e., October
through March in South America) total precipitation, notwithstanding their inclusion of El
Niño (in our case, global temperature) as a covariate.

Table 3.2 summarizes the estimated coefficients and associated standard errors for all of
the components of the stochastic weather generator fitted to precipitation data at Seoul.
Comparing this table with the corresponding models in Table 3.1, the AIC and BIC always
select the one with the aggregated covariates as being a better fit. The estimated coefficients
of the remaining covariates do not change very much (especially those for autocorrelation
and dependence) when the aggregated covariates are included (dispersion parameter for
binomial family and Gamma family are taken to be 1 and 2.518, respectively).

Table 3.1 Estimated coefficients (Coef.) and standard error (SE) values for all components
of the basic stochastic weather generator at Seoul.

Covariate category Precipitation Occurrence Precipitation intensity (mm)
Term Coef. SE Term Coef. SE

Constant µ -1.67 0.032 µ 2.18 0.025
Autocorrelation Jt−1 1.17 (0.040) − − −

Global Temp Gt 0.677 0.076 − − −
Seasonality Ct 0.69 0.033 Ct 0.91 0.034

St 0.25 0.031 St 0.30 0.034
AIC 19097 32881
BIC 19150 32903

Table 3.2 Estimated coefficients (Coef.) and standard error (SE) values for all components of the
stochastic weather generator with aggregated climate statistics as covariates at Seoul.

Covariate category Precipitation Occurrence Precipitation intensity (mm)
Term Coef. SE Term Coef. SE

Constant µ -2.68 0.079 µ 1.74 0.118
Summer ItPS

t 0.18 0.014 ItPS
t 0.09 0.019

Winter (1 − It)PW
t 0.32 0.083 (1 − It)PW

t 0.28 0.115
Autocorrelation Jt−1 1.06 0.041 − − −

Seasonality Ct 0.65 0.059 Ct 0.74 0.073
St 0.21 0.031 St 0.31 0.034

Interaction CtJt−1 0.18 0.057 − − −
StJt−1 0.11 0.054 − − −

AIC 18859 32858
BIC 18907 32895

Figure 3.1 illustrate how our proposed model performs in reproducing variances of an-
nual, as well as summer and winter, total precipitation. Time series of daily weather were
simulated over a 51 year period and aggregated statistics calculated, with the simulation ex-
ercise being repeated 500 times. Shown are boxplots (showing the minimum, lower quartile,
median, upper quartile, and maximum) of the standard deviation (SD) of the aggregated
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statistics along with the corresponding values for the data series over the 51 years. Box-
plots are a preferred method of data analysis in many applications, as they show the range
of variation in the statistics of simulations and provide a straightforward method of com-
paring these statistics with the historical data. The proposed model virtually eliminates
the overdispersion phenomenon in nearly all cases, with the results (not shown) not being
very sensitive to the precise value of the parameter governing the degree of smoothing in
LOESS (for example, the overdispersion in the annual total precipitation is still virtually
eliminated if the degree of smoothing is 0.9 instead of 0.8). The GLM weather generator
with less smoothed aggregated covariates tends to overestimate inter-annual variances (i.e.,
underdispersion). Note that precipitation in the winter season is simply not as variable as
in the summer season.
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Figure 3.1 Boxplots of simulated Sd of annual, summer and winter total precipitation(mm) based on the
original model (left) and with smoothed seasonal covariates (right). Horizontal solid lines: corresponding

observed values of the data series.

To demonstrate performance of the GLM weather generator, we look into more meaningful
daily statistics such as dry spells. The distribution of observed dry spells is compared to that
of simulated dry spells during summer season (see Figure 3.2). The Markov chain model for
daily precipitation occurrence can be fully characterized by the 2 transition probabilities
p11(t) = Pr{Jt = 1|Jt−1 = 1}, the conditional probability of a wet day given the previous
day was wet, and p01(t) = Pr{Jt = 1|Jt−1 = 0}, the conditional probability of a wet day
given the previous day was dry. As a function of the time of year, Figure 3.3 shows p11(t)
and p01(t), respectively. In each case, the curves for the GLM weather generator are included
along with the observed daily statistics.

4. Concluding remarks

It has been shown how the GLM approach to stochastic weather generators can been
extended to effectively eliminate the overdispersion phenomenon in seasonally aggregated
climate statistics. Consequently, scenarios of daily weather can be produced with more re-
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Figure 3.2 Distributions of observed dry spells (dashed line) and simulated dry spells (solid line) during
summer season over the 51 years.
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Figure 3.3 Modeled transition probabilities p11(t) (left) and p01(t) (right) with smoothed aggregated
covariates. Dots: empirical transition probabilities, i.e. frequencies of observed transitions calculated

separately on each day of the year.

alistic statistical properties resulting in better risk assessments. This extension involves the
incorporation of smoothed seasonally aggregated climate statistics into the GLM model as
covariates. The only non-automatic feature of this extension is the need to determine the de-
gree of smoothing that minimizes overdispersion, but the results are not very sensitive to the
exact choice of degree of smoothing. However, it is still somewhat uninformative to remove
overdispersion through explicit use of seasonal aggregated climate statistics as covariates in
the GLM weather generator.

Basically, our approach can be extended to other cliamte variables such as daily minimum
and maximum temperature. Let (Xt, Yt) denote the minimum and maximum temperature
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on day t of a given year, jointly modeled as a bivariate first-order autoregressive AR(1)
process (as in Richardson, 1981; Furrer and Katz, 2007). This bivariate process is modeled
indirectly through two univariate linear models of the form:

Xt =µX,0+µX,1Jt+ϕXXt−1+ψXYt−1+βX,1Ct+βX,2St+βX,SItN
S
t +βX,W (1−It)NW

t +εX,t (4.1)

Yt =µY,0+µY,1Jt+ϕY Yt−1+ψYXt+βY,1Ct+βY,2St+βY,SItM
S
t +βY,W (1− It)MW

t +εY,t (4.2)

where NS and NW (MS and MW ) are LOESS smoothed summer and winter seasonal
mean minimum (maximum) temperatures. Note that the summer and winter time series are
smoothed separately. This approach can also be extended to multisite weather generate by
using a latent Gaussian process to drive precipitation occurrence and a probability integral
transformed Gaussian process for intensity.

Statistical downscaling is based on the view that the regional climate is conditioned by
two factors: the large scale climatic state and regional/local physiographic features. For a
climate projection perspective, it is also interesting how the incorporation of such seasonally
aggregated climate statistics facilitates statistical downscaling of seasonal climate forecasts.
These results are encouraging in that the methodology provides a robust tool to generate
weather sequences consistent with any seasonal climate forecast of potential use in resources
planning and management. In the case of seasonal forecasts, the GLM weather generator
makes it straightforward to translate the uncertainty in the seasonal forecast product into
that for the corresponding conditional daily weather statistics.
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