• Title/Summary/Keyword: pre-harvest residue

Search Result 59, Processing Time 0.031 seconds

Dissipation characteristics of mandipropamid and thiamethoxam for establishment of pre-harvest residue limits in lettuce (상추의 생산단계 잔류허용기준 설정을 위한 농약 Mandipropamid 및 Thiamethoxam의 잔류소실특성 연구)

  • Yang, Seung-Hyun;Lee, Jae-In;Choi, Hoon
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.3
    • /
    • pp.267-274
    • /
    • 2020
  • The dissipation characteristics and kinetics of fungicide mandipropamid and insecticide thiamethoxam in lettuce under greenhouse conditions were investigated at three different lettuce-growing fields for estimating the pre-harvest residue limits (PHRLs). The analytical methods were fully validated for the quantitation of pesticide residues using High-Performance Liquid Chromatography-Photo Diode Array detector or Ultraviolet-Visible Detector and applied to real samples. The lettuces suitable for shipment were harvested during 10 days including pre-harvest interval after treatment at the recommended dose by safe-use guidelines. The initial mean residues in different fields were 6.68-17.87 and 4.96-8.31 mg/kg for mandipropamid and thiamethoxam, respectively, which decreased to 16-54 and 14-44% in 10 days. The clothianidin, a metabolite of thiamethoxam, was detected in <0.02 to 0.37 mg/kg. The dissipation of both pesticides followed first-order kinetics over a period of 10 days after application. Based on the residue data, the mean dissipation rate constant (λ) and biological half-lives (T1/2) were estimated to be -0.1060 and 6.5 days of mandipropamid and -0.1236 and 5.6 days of thiamethoxam. The PHRLs for lettuce on the 10th and 5th day before harvesting were calculated to be 63.24 and 43.56 mg/kg for mandipropamid, and 44.66 and 25.88 mg/kg for thiamethoxam, with -0.0746 and -0.1091 of the upper 95% confidence intervals of dissipation rate constant, respectively. This work would be useful as guidance for adjusting the shipment date and contribute to stabilizing the income of farmers in Korea.

The Residual Characteristic of Chromafenozide and Pyridalyl in Kale (케일 중 살충제 Chromafenozide와 Pyridalyl의 잔류 특성)

  • Sun, Jung-Hun;Hwang, Kyu-Won;Jeong, Kyoung-Su;Lee, Tae-Hyun;Kim, Hyun-Jin;Park, Sang-Jeong;Moon, Joon-Kwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.2
    • /
    • pp.125-134
    • /
    • 2022
  • BACKGROUND: It is a very important task to block distribution of the agricultural products contaminated with pesticides in advance to protect consumers from residual pesticides among the agricultural products. Therefore, this study was performed to determine residual characteristics of pesticides in time-dependent manner and present scientific evidences for pre-harvest residue limit (PHRL) setting. METHODS AND RESULTS: The tested pesticides, chromafenozide and pyridalyl were sprayed onto the kale twice (seven day intervals) and then the plant samples were collected at 0 (after 3 hours), 1, 2, 3, 5, 7, and 10 days after the last spraying. Residual concentration of chromafenozide in kale decreased with 74.9% (of decreased fraction, field 1) and 85.3% (field 2) and pyridalyl decreased with 81.2% (field 1) and 85.8% (field 2), calculated by comparisons of the concentrations at 0 day and 10 days. Also biological half-lives of chromafenozide in kale were 5.6 day (field 1) and 3.4 day (field 2), and those of pyridalyl were 4.3 day (field 1) and 3.5 day (field 2). CONCLUSION(S): If the residues of chromafenozide and pyridalyl in kale from 10 days before harvest are less than 37.6 mg/kg and 58.9 mg/kg, respectively, it is expected that safe kale below MRL can be supplied on the pre-harvest day.

Establishment of Pre-Harvest Residue Limit for Pyrimethanil and Methoxyfenozide during Cultivation of grape (포도(Vitis vinifera L.) 중 Pyrimethanil 및 Methoxyfenozide의 생산단계 잔류허용기준 설정)

  • Kim, Ji Yoon;Woo, Min Ji;Hur, Kyung Jin;Manoharan, Saravanan;Kwon, Chan-Hyeok;Hur, Jang Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.2
    • /
    • pp.81-87
    • /
    • 2015
  • The present study was aimed to predict the pre-harvest residue limits (PHRLs) of pyrimethanil (fungicide) and methoxyfenozide (insecticide) in grape, and to estimate their biological half-lives and residual characteristics. The pesticides were sprayed once on grape in two different fields 10 days before harvest. At the end of 0, 1, 2, 3, 5, 7 and 10 days after application, samples were harvested for further analysis. The residual pesticides were extracted with acetonitrile and partitioned with dichloromethane, and the high-performance liquid chromatography with diode array detector (HPLC/DAD) was employed for the residue analysis. The results obtained in the present study show that the limit of detection of both pesticides were found to be $0.01mg\;kg^{-1}$. The recoveries of these pesticides were ranged between 80.6% and 102.5% with coefficient of variation lower than 10%. The biological half-lives of both pesticides were observed in field 1 and field 2 which shows 7.7 and 7.4 days for pyrimethanil and 5.1 and 6.1 days for methoxyfenozide, respectively. Further, the PHRL of pyrimethanil and methoxyfenozide was found to be $8.90mg\;kg^{-1}$ and $5.51mg\;kg^{-1}$, respectively at 10 days before harvest. Consequently, the present study suggests that the residual amounts of both pesticides will be lower than the maximum residue limits (MRLs) when grape is harvested.

Establishment of Pre-Harvest Residue Limits (PHRL) of Flubendiamide and Pyriofenone on Strawberry (Fragaria ananassa Duch.) (생산단계 잔류허용기준설정을 위한 Flubendiamide 및 Pyriofenone의 딸기(Fragaria ananassa Duch.) 중 경시적 잔류특성 연구)

  • Kim, Hee-Gon;Kim, Ji-Yoon;Hur, Kyung-Jin;Kwon, Chan-Hyeok;Hur, Jang Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.21 no.1
    • /
    • pp.62-67
    • /
    • 2017
  • In this study, the residue patterns of flubendiamide and pyriofenone registered in the strawberry were investigated to predict pre-harvest residue limit (PHRL). The samples were harvested at 0, 1, 2, 3, 5, 7, 10 days after treatment and the pesticide residues were analyzed by HPLC/UVD. The limit of quantification (LOQ) was $0.01mg\;kg^{-1}$ for flubendiamide and pyriofenone. The recovery levels of flubendiamide and pyriofenone were $90.9{\pm}2.2%$ and $81.9{\pm}0.8%$, $87.7{\pm}2.1%$ and $85.3{\pm}1.1%$ for spiked levels of 0.01 and $0.1mg\;kg^{-1}$, respectively. The values of biological half-lives for field 1 and field 2 were 8.1 and 7.2 days for flubendiamide, 7.0 and 6.9 days for pyriofenone. According to these results, we recommends the level of PHRL on strawberry for flubendiamide and pyriofenone as 1.87 and $3.76mg\;kg^{-1}$ at 10 days before harvest, respectively.

Establishment of Pre-Harvest Residue Limits (PHRLs) of Fungicide Fenarimol and Insecticide Flufenoxuron in Peaches during Cultivation Period (복숭아 재배기간 중 살균제 Fenarimol과 살충제 Flufenoxuron의 생산단계 잔류허용기준 설정)

  • Moon, Hye-Ree;Park, Jae-Hoon;Yoon, Ji-Yeong;Na, Eun-Shik;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.2
    • /
    • pp.136-141
    • /
    • 2013
  • BACKGROUND: This study was performed to establishment the PHRLs of peach during cultivation period, and also to estimate biological half-lives for residues of fenarimol and flufenoxuron. METHODS AND RESULTS: The extracted samples of fenarimol were analyzed by GC-ECD and the flufenoxuron extracted samples were analyzed by HPLC-DAD. Recoveries of fenarimol at two fortification levels of 0.1 mg/kg, 0.5 mg/kg were $93.69{\pm}6.56$(%) and $94.45{\pm}1.60$ (%), respectively. And recoveries of flufenoxuron at two fortification levels of 0.1 mg/kg, 0.5 mg/kg were $106.73{\pm}5.90$(%) and $96.37{\pm}6.66$(%), respectively. CONCLUSION(S): The biological half-lives of fenarimol in single treatment and triple treatment were 3.5day and 3.8day. that of Flufenoxuron was also 7.1day and 4.9day, respectively. The PHRL of fenarimol were recommended as 1.5 mg/kg for 10day before harvest and the PHRL of flufenoxuron were recommended as 1.4 mg/kg for 10day before harvest.

Persistence and Dislodgeable Residues of Chlorpyrifos and Procymidone in Lettuce Leaves under Greenhouse Condition (상추의 생산단계별 Chlorpyrifos 및 Procymidone의 잔류허용기준 설정)

  • Kim, Young-Sook;Park, Ju-Hwang;Park, Jong-Woo;Lee, Young-Deuk;Lee, Kyu-Seung;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.2
    • /
    • pp.149-155
    • /
    • 2002
  • Two pesticides commonly used for lettuce cultivation including chlorpyrifos and procymidone were subjected to a field residue trial to ensure safety of terminal residues in the harvest. After pesticides were applied at standard and double rates in a foliar spray, leaf persistence of their residues was investigated far 10 days prior to harvest. Even though far exceeded the tolerances, initial leaf residues were rapidly dissipated with time and remained only 0.4$\sim$7.2% of the residues in the harvest. As well fitted by the first-order kinetics, biological half-lives of the pesticide residues in lettuce leaves ranged 1.2$\sim$2.6 days. Slow dissipation of the residues in the harvest was observed during storage at room temperature and 4$^{\circ}C$ for 7 days. Portions of dislodgeable residues which resided in detergent washings decreased as time elapsed. Patterns in dissipation and distribution of dislodgeable residues were not largely affected by the application rate of pesticides. It is concluded that timing of pesticide application, that is, pre-harvest interval would be the first factor to determine the terminal residue level in edible portions of lettuce.

Establishment of Pre-Harvest Residue Limits of Clothianidin and Thiacloprid in Ginseng (인삼 중 Clothianidin 및 Thiacloprid의 생산단계 농약잔류허용기준 설정)

  • Na, Eun-Shik;Lee, Yong-Jae;Kim, Kyoung-Ju;Kim, Seong-Soo;Lee, Kyu-Seung
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.3
    • /
    • pp.155-161
    • /
    • 2013
  • The residue patterns of clothianidin and thiacloprid, insecticides registered in the ginseng, were investigated to predict pre-harvest residues limits (PHRL). Pesticides were treated under Korea GAP (Good Agricultural Practices) with the recommended dose (single dose) and twice of recommended dose (double dose). Samples were collected 11 times over 42 days (each 0, 2, 5, 8, 12, 16, 20, 24, 28, 33, 42 days after treatment). Residues of clothinidin and thiacloprid were analyzed by UPLC/TQD. Biological half-life of clothinidin in single dose and double dose were 14.6 days and 10.2 days and that of thiacloprid were also 9.7 days and 11.2 days, respectively. The PHRL of ginseng on 10 days before harvest was 0.3 mg/kg in clothianidin and 0.18 mg/kg in thiacloprid.

Residual Patterns of Insecticides Bifenthrin and Chlorfenapyr in Perilla Leaf as a Minor Crop (소면적 재배 작물 들깻잎 중 살충제 Bifenthrin과 Chlorfenapyr의 잔류양상)

  • Jeon, Sang-Oh;Hwang, Jeong-In;Kim, Tae-Hwa;Kwon, Chan-Hyeok;Son, Yeong-Uk;Kim, Dong-Sool;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.3
    • /
    • pp.223-229
    • /
    • 2015
  • BACKGROUND: It is important to understand residual patterns of pesticides applied on crops for ensuring their safety in agricultural products. However, there are few studies on the residual patterns of pesticides in minor crops, which are small in cultivation area. In this study, residual amounts of bifenthrin and chlorfenapyr sprayed on perilla leaf as a minor crop were investigated to know their residual patterns. METHODS AND RESULTS: Bifenthrin and chlorfenapyr were sprayed 2 or 3 times on perilla leaves at a week interval prior to harvest, and the perilla leaves were collected at 0, 1, 3, 5 and 7 days after the final application of pesticides. Recoveries for residual analysis of pesticides spiked on perilla leaves with concentrations of 0.1 and 0.5 mg/kg were 81.9-104.8%. The residual amounts of pesticides interpreted using first order kinetics model show that dissipation constants of bifenthrin and chlorfenapyr in perilla leaves were 0.0724-0.0535 and $0.0948-0.0821day^{-1}$, respectively. In addition, the dissipation half-lives in perilla leaves were 9.6-12.9 days for bifenthrin and 7.3-8.4 days for chlorfenapyr. When pre-harvest residue limits (PHRL) of bifenthrin and chlorfenapyr at 10 days before harvest calculated on the basis of the dissipation constants and maximum residue limits of the pesticides were calculated as 17.1 for bifenthrin and 15.9 mg/kg for chlorfenapyr. CONCLUSION: Therefore, the PHRL calculated using the time-dependant residual patterns of pesticides in perilla leaves and their regression analysis may be used as experimental evidences in order to ensure the safety of pesticides in perilla leaves before harvest.

Establishment of Pre-Harvest Residue Limit (PHRL) of Fungicides Azoxystrobin and Difenoconazole on Prunus mume fruits (매실 중 살균제 azoxystrobin과 difenoconazole의 생산단계 잔류허용기준 설정)

  • Lee, Dong Yeol;Kim, Yeong Jin;Park, Min Ho;Lee, Seung Hwa;Kim, Sang Gon;Kang, Nam Jun;Kang, Kyu Young
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.307-313
    • /
    • 2013
  • This study was carried out to investigate the residual characteristics of fungicide azoxystrobin and difenoconazole in Prunus mume fruits, and establish pre-harvest residue limits (PHRL) based on dissipation and biological half-lives of fungicide residues. The fungicides were sprayed onto the crop at recommended dosage once and 3 times in 7 days interval, respectively. The samples were harvested at 0, 1, 2, 4, 6, 8, 10, 12 and 14 days after treatment. These residual pesticides were extracted with QuEChERS method, clean-up with $NH_2$ SPE cartridge, and residues were analyzed by HPLC/DAD and GLC/ECD, respectively. Method quantitative limits (MQL) of azoxystrobin were 0.03 mg $kg^{-1}$ and of difenoconazole were 0.006 mg $kg^{-1}$. Average recovery were $93.2{\pm}2.49%$, $85.5{\pm}1.97%$ for azoxystrobin at fortification levels at 0.3 and 1.5 mg $kg^{-1}$, and $100.8{\pm}6.74%$, $87.6{\pm}9.92%$ for difenoconazole at fortification levels at 0.06 and 0.3 mg $kg^{-1}$, respectively. The biological half-lives of azoxystrobin were 5.9 and 5.2 days at recommended dosage once and 3 times in 7 days interval, respectively. The biological half-lives of difenoconazole were 9.3 and 8.0 days at recommended dosage once and 3 times in 7 days interval, respectively. The PHRL of azoxystrobin and difenoconazole were recommended as 5.32 and 1.64 mg $kg^{-1}$ for 10 days before harvest, respectively.

Pre-Harvest Residual Characteristics of Boscalid and Pyraclostrobin in Paprika at Different Seasons and Plant Parts (파프리카 재배 중 살균제 boscalid와 pyraclostrobin의 사용시기에 따른 작물 부위별 생산단계 잔류특성)

  • Cho, Kyu-Song;Lee, So-Jung;Lee, Dong-Yeol;Kim, Yeong-Jin;Choe, Won-Jo;Lee, Je-Bong;Kang, Kyu-Young
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.3
    • /
    • pp.269-277
    • /
    • 2011
  • Recent outbreak of new diseases and pests which were introduced from abroad, seriously hampered both quality and safety of paprika fruits. This study has been carried out to aid an establishment of guideline for safe use of pesticides and reduction of their residues on paprika. Systemic fungicides boscalid and pyraclostrobin of either mixed (a.i.; 13.6+6.8%) or single (a.i.; 47 and 18.8%, respectively) water dispersible granule formulation(WG) products were sprayed with recommended or double dosage on paprika grown in green house at March and June. To draw pre-harvest residue limit, residues of each fungicide were analyzed from fruits collected eight times from 18 to 1 day pre-harvest. The biological half-lives of both boscalid and pyraclostrobin in mixed formulation in March and June were slightly shorter than those of single formulation which ranged from 14.4 to 20.1 days. Residue levels of both fungicides of single formulation in fruits in June were about one lower compared to those in March. However, application of double dosage frequently exceeded MRLs from fruits grown both seasons. These results showed that residue levels on fruits persisted longer period of time, more than two weeks, and so the case applied in winter season. The dissipation of fungicides on leaves and fruits was compared. The distribution of both fungicides in leaves was 20-200 times higher than that of fruits and persisted up to 18 days of pre-harvest period at the concentration of 10-40 ${\mu}g\;g^{-1}$. This study indicated that the mixed formulation product exhibited low residues in fruits, but high and long enough to pathogen growth in leaves.