• Title/Summary/Keyword: power tracing method

Search Result 72, Processing Time 0.032 seconds

A Study on the Simulation of Leak Flow-rate Using Isothermal Chamber (등온화용기를 이용한 누설유량 시뮬레이션에 관한 연구)

  • Ji, S.W.;Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.71-75
    • /
    • 2010
  • Leak detection technology is a challenging research until nowadays, because it has wide and various applications in industry. Furthermore pneumatic component reliability test based on ISO requires air leakage measurement. The conventional measurement methods need a complex operation and the calibration of leak detector. Tracing the history of our study, we proposed a new method for measurement of leak flow rate using isothermal chamber. In this study, propose a simulation model of isothermal chamber by infinitesimal flow -rate, such as a leak flow-rate. The effectiveness of the proposed simulation model is proved by simulation and experimental results. Base on the comparison results, proposed simulation model is good agreement with experimental results.

Goal-oriented multi-collision source algorithm for discrete ordinates transport calculation

  • Wang, Xinyu;Zhang, Bin;Chen, Yixue
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2625-2634
    • /
    • 2022
  • Discretization errors are extremely challenging conundrums of discrete ordinates calculations for radiation transport problems with void regions. In previous work, we have presented a multi-collision source method (MCS) to overcome discretization errors, but the efficiency needs to be improved. This paper proposes a goal-oriented algorithm for the MCS method to adaptively determine the partitioning of the geometry and dynamically change the angular quadrature in remaining iterations. The importance factor based on the adjoint transport calculation obtains the response function to get a problem-dependent, goal-oriented spatial decomposition. The difference in the scalar fluxes from one high-order quadrature set to a lower one provides the error estimation as a driving force behind the dynamic quadrature. The goal-oriented algorithm allows optimizing by using ray-tracing technology or high-order quadrature sets in the first few iterations and arranging the integration order of the remaining iterations from high to low. The algorithm has been implemented in the 3D transport code ARES and was tested on the Kobayashi benchmarks. The numerical results show a reduction in computation time on these problems for the same desired level of accuracy as compared to the standard ARES code, and it has clear advantages over the traditional MCS method in solving radiation transport problems with reflective boundary conditions.

A High Speed Address Recovery Technique for Single-Scan Plasma Display Panel(PDP) (Single-Scan Plasma Display Panel(PDP)를 위한 고속 어드레스 에너지 회수 기법)

  • Lee Jun-Young
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.9
    • /
    • pp.450-453
    • /
    • 2005
  • A high speed address recovery technique for AC plasma display panel(PDP) is proposed. Replacing GND switch by clamping diode. the recovery speed can be increased by saving GND hold-time and switching loss due to GND switch also becomes also be reduced. The proposed method is able to perform load-adaptive operation by controlling the voltage level of energy recovery capacitor, which prevents increasing inefficient power consumption caused by circuit loss during recovery operation. Test results with 50' HD single-scan PDP(resolution = 1366$\times$768) show that less than 3sons of recovery time is successfully accomplished and about$54\%$ of the maximum power consumption can be reduced, tracing minimum power consumption curves.

Analysis of Radio-Wave Propagation Characteristics in Curved Tunnel (곡선 터널 내에서 전파특성 분석)

  • 김영문;정민석;진용옥;이범선
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.10
    • /
    • pp.1017-1024
    • /
    • 2002
  • In this paper, we present the analysis of radio wave propagation characteristics in curved tunnels. Tunnel propagation models are performed in two cases which are using ray-tracing method for straight tunnels and geometrical optics extension to the standard hybrid waveguide model for curved ones. By regression analysis for measured power based on distance between the transmitter and the received antenna in tunnels that have 3.5 m $\times$ 6 m cross section and limited wall depth path loss are 0.19 dB/m for straight section and 0.68 dB/m for curved ones. By comparing model analysis with measurement in tunnels, it has been shown that the simulated results of tunnel propagation models are similar to the measured values.

CONSERVATIVE FINITE VOLUME METHOD ON BOUNDARY TREATMENTS FOR FLOW NETWORK SYSTEM ANALYSES (유동망 시스템 해석을 위한 경계처리에 대한 보존형 유한체적법)

  • Hong, S.W.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.19-26
    • /
    • 2008
  • From numerical point of view on flow network system analyses, stagnation properties are not preserved along streamlines across geometric discontinuities. Hence, GJM and DTM using ghost cell and thermodynamic relations are developed to preserve the stagnation enthalpy for the boundaries, such as the interfaces between junction and branches and the interface between two pipes of different cross-sections in serial pipelines. Additionally, the resolving power and efficiencies of the 2nd order Godunov type FV schemes are investigated and estimated by the tracing of the total mechanical energy during calculating rapid transients. Among the approximate Riemann solvers, RoeM is more suitable with the proposed boundary treatments especially for junction than Roe's FDS because of its conservativeness of stagnation enthalpy across geometric discontinuities.

  • PDF

CONSERVATIVE FINITE VOLUME METHOD ON BOUNDARY TREATMENTS FOR FLOW NETWORK SYSTEM ANALYSES (유동망 시스템 해석을 위한 경계처리에 대한 보존형 유한체적법)

  • Hong, S.W.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.19-26
    • /
    • 2008
  • From numerical point of view on flow network system analyses, stagnation properties are not preserved along streamlines across geometric discontinuities. Hence, GJM and DTM using ghost cell and thermodynamic relations are developed to preserve the stagnation enthalpy for the boundaries, such as the interfaces between junction and branches and the interface between two pipes of different cross-sections in serial pipelines. Additionally, the resolving power and efficiencies of the 2nd order Godunov type FV schemes are investigated and estimated by the tracing of the total mechanical energy during calculating rapid transients. Among the approximate Riemann solvers, RoeM is more suitable with the proposed boundary treatments especially for junction than Roe's FDS because of its conservativeness of stagnation enthalpy across geometric discontinuities.

  • PDF

Heat Source Modeling of Laser Keyhole Welding: Part 1-Bead Welding (레이저 키홀 용접의 열원 모델링: Part 1-비드 용접)

  • Lee Jae-Young;Lee Won-Beom;Yoo Choong-Don
    • Journal of Welding and Joining
    • /
    • v.23 no.1
    • /
    • pp.48-54
    • /
    • 2005
  • Laser keyhole welding is investigated using a three-dimensional Gaussian heat source, and the heat source parameters such as the keyhole depth, welding efficiency and power density distribution factor are determined in a systematic way. For partial penetration, the keyhole depth is same as the penetration and is predicted using the experimental data. The welding efficiency is calculated using the ray-tracing method and the power density distribution factor is determined from the bead shape. Full penetration is classified into the transition, normal and excessive modes depending on the degree of keyhole opening. Thermal analysis of the bead-on-plate welds is conducted using the Gaussian heat source, and the calculated weld geometries show reasonably good agreements with the experimental results.

A Study on the Evaluation of Acoustic Power of Korean Railway for Noise Prediction and its Application (한국철도 소음 예측을 위한 음향파워 산출 및 활용에 관한 연구)

  • 조준호;이덕희;최성훈;김재철
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.2
    • /
    • pp.93-98
    • /
    • 2004
  • For the reduction and efficient management of railway noise, first of all prediction of railway noise is necessarily requisted. At home and abroad many studies for prediction of railway nearby noise have been accomplished. But it is impossible to predict exactly for the Korean Railway, because the acoustic powers for each rolling stock used in Korea have not been built yet. So in this study, acoustic powers for each Korean rolling stock such as Samaeul, Mugungwha were builded acceding to the speed and rail support systems. Predicted results using the acoustic powers suggested in this study are compared with measured results and it is known that these acoustic powers can be used for precise prediction of railway noise.

Solar Flux Calculation for Heat Transfer Modeling of Volumetric Receivers (체적식 흡수기의 열전달 모델링을 위한 태양 열유속 계산)

  • Lee, Hyun-Jin;Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.223-228
    • /
    • 2011
  • The volumetric solar receiver is a key element of solar power plants using air. The solar flux distribution inside the receiver should be a priori known for its heat transfer modeling. Previous works have not considered characteristics of the solar flux although they change with radiative properties of receiver materials and receiver geometries. A numerical method, which is based on the Monte Carlo ray-tracing method, was developed in the current work. The solar flux distributions inside multi-channeled volumetric solar receivers were calculated when light is concentrated at the KIER solar furnace. It turned out that 99 percentage of the concentrated solar energy is absorbed within 15 mm charmel length for the charmel radius smaller than 1.5 mm. If the concentrated light is assumed to be diffuse, the absorbed solar energy at the charmel entrance region is overpredicted while the light penetrates more deeply into the charmel. The developed method will help understand the solar flux when only a part of concentrated light is of interest. Furthermore, if the presented results are applied for heat transfer modeling of multi-channeled volumetric solar receivers, one could examine effects of receiver charmel properties and shape on air temperature profiles.

  • PDF

Concentrated Solar Flux Modeling for the Heat Transfer Analysis of Multi-Channeled Solar Receivers (다채널 태양열 흡수기의 열전달 해석을 위한 집광 열유속 모델링)

  • Lee, Hyun-Jin;Kim, Jong-Kyu;Lee, Sang-Nam;Kang, Yong-Heack
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.4
    • /
    • pp.41-47
    • /
    • 2011
  • The volumetric solar receiver is a key element of solar power plants using air. The solar flux distribution inside the receiver should be a priori known for its heat transfer analysis. Previous works have not considered characteristics of the solar flux although they change with radiative properties of receiver materials and receiver geometries. A numerical method, which is based on the Monte Carlo ray-tracing method, was developed in the current work. The solar flux distributions inside multi-channeled volumetric solar receivers were calculated when light is concentrated at the KIER solar furnace. It turned out that 99 percentage of the concentrated solar energy is absorbed within 15mm channel length for the channel radius smaller than 1.5mm. If the concentrated light is assumed to be diffuse, the absorbed solar energy at the channel entrance region is over predicted while the light penetrates more deeply into the channel. Once the presented results are imported into the heat transfer analysis, one could examine effects of material property and geometry of the receiver on air temperature profiles.