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a b s t r a c t

Discretization errors are extremely challenging conundrums of discrete ordinates calculations for radi-
ation transport problems with void regions. In previous work, we have presented a multi-collision source
method (MCS) to overcome discretization errors, but the efficiency needs to be improved. This paper
proposes a goal-oriented algorithm for the MCS method to adaptively determine the partitioning of the
geometry and dynamically change the angular quadrature in remaining iterations. The importance factor
based on the adjoint transport calculation obtains the response function to get a problem-dependent,
goal-oriented spatial decomposition. The difference in the scalar fluxes from one high-order quadra-
ture set to a lower one provides the error estimation as a driving force behind the dynamic quadrature.
The goal-oriented algorithm allows optimizing by using ray-tracing technology or high-order quadrature
sets in the first few iterations and arranging the integration order of the remaining iterations from high
to low. The algorithm has been implemented in the 3D transport code ARES and was tested on the
Kobayashi benchmarks. The numerical results show a reduction in computation time on these problems
for the same desired level of accuracy as compared to the standard ARES code, and it has clear advantages
over the traditional MCS method in solving radiation transport problems with reflective boundary
conditions.
© 2022 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Radiation transport calculation is essential for designing and
evaluating nuclear devices such as particle accelerators, medical
radiation treatments and nuclear reactors. The discrete ordinates
method (SN) is one of the primary methods for solving the linear
Boltzmann equation and has been used inmany radiation transport
codes [1]. In the SN calculation, the approximation of the angular
variables inevitably leads to discretization errors. Especially for
problems with void regions such as large cavities and long ducts,
the strong anisotropic distribution of angular flux is exceptionally
prone to cause ray effects, resulting in non-physical oscillations in
flux distribution [2]. Since the quadrature sets are not arbitrarily
rotation invariant, the angular discretization error is an inherent
defect of the SN method. This shortcoming seriously affects the
reliability of the SN calculation, and its mitigation technology has
always been one of the research hotspots in this field. It's worth
noting that the heterogeneous effect of the angular flux is a process
by Elsevier Korea LLC. This is an
of gradual weakening with iteration. Traditionally, the flux from
every iteration is combined, with the same quadrature applied to
the combined flux, but in fact, the quadrature requirements
generally decrease with each iteration. In other words, different
quadrature sets can be used for each iteration, and an intelligent
scheme can be developed to choose, on the fly, an appropriate
angular quadrature for each iteration.

Several methods have been proposed for mitigating the angular
discretization error. The first is local angular refinement. It in-
creases the discrete directions of the quadrature sets in a region
with angular flux anisotropy to improve the numerical integration
precision. Longoni investigated ordinate splitting (OS) [3]and
regional angle refinement (RAR) [4]. OS and RAR are effective for
transport problems with strong angular correlation, but the direc-
tion of refinement should be selected in advance according to the
calculationmodel. In 2021, Dai studied an adaptive algorithm based
on linear discontinuous finite element quadrature sets over an
icosahedron, generating a problem-dependent local refinement
quadrature set [5]. Although local angular refinement can effec-
tively mitigate the angular discretization error, it is difficult to
generate sufficient directions at a reasonable computational cost
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when the source region is far from the target. Stone first studied the
angular adaptive method in 2007 [6]. He developed the adaptive
quadrature schemes in two dimensions based on standard quad-
rature sets. On this basis, Jarrell and Lau extended the algorithm to
three-dimensional by using linear discontinuous finite element
(LDFE) quadrature sets and developed an optimal mapping algo-
rithm [7,8]. In 2018, with the spherical quadrilateral quadrature
sets, Zhang evaluated a goal-oriented angular adaptive algorithm
based on the adjoint value theory to mitigate ray effects [9].
However, the accuracy of the applied quadrature sets may hinder
the development of this angular adaptive method. The collision
source method is another widely used in discretization errors
mitigation. The collision source method calculates the uncollided
and collided fluxes using a high-order transport or analytical
method. In 1989, Alcouffe modified the standard first-collision
source (FCS) method using the angle-integrated mesh-cell bal-
ance equation to improve the calculation accuracy [10]. In 1993,
Winarno used the n'th collision source method within the FCS
framework to mitigate ray effects in calculating multidimensional
photon transport but only dealt with the one-group energy prob-
lem of isotropic scattering [11]. In 2015, Walters developed the
adaptive collision source method, obtaining the flux from each
scattering source iteration with a potentially different quadrature
order [12].

In previous studies, we developed the multi-collision source
(MCS) method, which builds off the FCS method by separating the
uncollided and collided fluxes [13]. The MCS method calculates
multi-collision sources via spatial decomposition to solve the SN
equation for serious anisotropy problems and extends the ability to
eliminate ray effects to secondary ray effects and numerical diffu-
sion. Unfortunately, besides limitations of the algorithm in terms of
boundary conditions, computational efficiency, the selection of ray
tracing region in the MCS method relies on user intuition or prior
knowledge of specific issues. The above problems restrict the usage
scenario of the method.

The goal-oriented MCS method is composed of both goal-
oriented spatial decomposition and dynamic quadrature. It can
achieve good speedups and more robust to a wide variety of
problems for which the MCS is not as influential. The rest of the
paper is organized as follows. An overview of our algorithm is
presented in Section II. Results are presented in Section III, and
conclusions and further work are summarized in Section Ⅳ.
2. Methodology

2.1. Multi-collision source algorithm

One-group steady-state neutron transport equation can be
written in operator form as

LJ¼ SJþ Q (1)

whereJ is the angular flux,Q is the localized source, the streaming-
collision operator L and scattering operator S are defined as

L¼U$Vþ St (2)

S¼
ð∞
0

dE0
ð
4p

SsdU (3)

where St is the macroscopic total cross-section and Ss is the
macroscopic scattering cross-section.

The general source iteration scheme is
2626
LJðlþ1Þ ¼ SJðlÞ þ Q (4)

where jðlÞ is the flux after iteration l. For problems with scattering,
if the initial scattering source is estimated to be zero (jð0Þ ¼ 0), the
source iteration angular flux estimate after l sweeps is, physically,
the angular flux due to particles that have experienced at most l-1
scattering events. After a sufficient number of iterations, both sides
of the equation will converge to within some given tolerance.

In theMCSmethod, we expand the total flux into the fluxes from
different collision sources. Then, solving (1) is formally equivalent
to solving the following system of equations

LJð0Þ ¼ Q
LJð1Þ ¼ SJð0Þ

:::
LJðlÞ ¼ SJðl�1Þ ðl � 1Þ

(5a)

and

LJðlþ1Þ ¼ SJðlÞ

L
�
Jðlþ1Þ þJðlþ2Þ� ¼ S

�
JðlÞ þJðlþ1Þ�

/
L
�
Jðlþ1Þ þ/þJðnÞ� ¼ S

�
JðlÞ þ/þJðn�1Þ� ðn/∞Þ

(5b)

For iteration l, the method splits the angular flux into semi-
analytical and SN parts. In order to calculate these two parts, the
method divides the spatial domain into two hypothetical parts,
regions A and B, and the fixed-source is always in region A. The

scattering source (Sjðl�1Þ) takes the form of region A (QA) and re-

gion B (QB), where Sjðl�1Þ ¼ QA þ QB. Then we can redefine the
scattering source distribution using the spatial position of particle
scattering. The angular fluxes that are scattered in regions A and B

are now defined as L�1QA and L�1QB. L
�1QA can be solved semi-

analytically using ray tracing

L�1QA ¼ dðU�UA/rÞ
Sjðl�1Þ

4p
e�tðrA;rÞ

jrA � rj2
(6)

where dðU�UA/rÞ is the Dirac delta function, rA and r are the lo-
cations of the point source and targeting grid, tðrA; rÞ is the optical
distance between rA and r, and jrA �rj is the distance between rA
and r. L�1QB is solved by traditional SN operation, is commonly
referred to as a transport sweep. As mentioned above, the flux after
iteration l can be calculated from

jðlÞ ¼ L�1QA þ L�1QB (7)

and the source term after l'th collision (Q ðlÞ) can be written as:

Q ðlÞ ¼ S
�
jð0Þ þ :::þjðlÞ�¼ S

Xl
i¼0

jðiÞ (8)

The angular flux after n'th collision (jSN) can be solved by
traditional SN transport sweeps. Upon the convergence of the
source iterations, the angular flux jSN is given by

L

 Xn
i¼lþ1

jðiÞ
!
¼ S

 Xn
i¼lþ1

jðiÞ
!

þ Q ðlÞ (9)

and the total angular flux is given by
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j¼
Xl
i¼0

jðiÞ þ jSN (10)

The standard MCS method needs full-scale calculation models
(without the reflective boundary conditions) to ensure effective-
ness because the ray tracing calculation is difficult to deal with the
reflective boundary conditions [14]. A potential downside of the ray
tracing in the current implementation is that it is difficult to
determine how reflected collided angular flux at the surface affects
collided angular flux inside the problem. For the above reasons, the
transport sweep with high-order quadrature sets is a substitute for
the semi-analytical calculation of the problem with reflective
boundary conditions. We illustrate these two treatments in Fig. 1.
2.2. Goal-oriented spatial decomposition

In some radiation transport problems, one is more interested in
an accurate detector response than an exact solution across the
whole domain. For the previous MCS method, the selection of the
MCS region relies on user intuition or prior knowledge of certain
issues. The spatial decomposition is related to the physical char-
acteristics of the problem. The goal-oriented algorithm aims to
minimize the error in the detector response with as few unknowns
as possible. The angular flux in the highest energy group is always
the most anisotropic. For multi-group problems, the adjoint
transport calculation is only implemented in the highest energy
group, and the resulting spatial decomposition scheme is applied to
all energy groups.

The monoenergetic forward transport equation is

U $VjþStj¼
ð
U0

SsðU0 /UÞjdU0 þ Q (11)

It is convenient to write in linear operator notation as

Hj¼Q (12)

and we may define j* as the adjoint function of J. For linear
operator H, its adjoint operator H* can be defined as

Cj*;HjD¼ Cj;H*j*D (13)

The neutron importance is expressed by a solution of the adjoint
transport equation driven by a source related to detector response,
and it obeys the adjoint transport equation
Fig. 1. Sketch of collided flux calculations for the MCS metho
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�U $Vj*þStj
*¼

ð
U0

SsðU/U0Þj*dU0 þ Q* (14)

where j* is the adjoint angular flux, Q* is the adjoint source. Again,
use operator notation to write (14) as

H*j* ¼Q* (15)

The differences with the forward transport equation are the sign
of the streaming term and different source terms (i.e., the detector
cross-section (Sd) instead of the external source). The larger the
adjoint angular flux is, the larger is the probability that neutrons in
that location in phase-space will be detected. The SN method only
solves the transport equation in a limit number of directions, so the
adjoint scalar flux is used to estimate the neutron importance in
this paper, as in (16)

f*¼
ð
4p

j*dU (16)

Neutron importance mainly focuses on the interesting physical
quantity. It shows the relative contribution in different phase
spaces for the detector response without the contribution of for-
ward transport solution. We optimize the spatial decomposition
scheme based on contributon theory [15]. The angular contributon
flux is defined as the product of the forward and adjoint angular
fluxes

Cðr;UÞ¼jðr;UÞ$j*ðr;UÞ (17)

Thenmultiply (11) byj* and (14) byJ and subtract to obtain the
contributon transport equation

U $Vjj* ¼j*
ð
U0

SsðU0 /UÞjdU0

� j

ð
U0

SsðU/U0Þj*dU0 þQj*�Q*j (18)

where Cðr;UÞ is a function indicating how the contributions to
particles within mesh space r and along direction U. This equation
contains contributon cross sections that depend on the adjoint flux
associated with the detector. Thus, the importance distribution
here depends not only on the source distribution and material
properties of the system, but also on the detector used to perceive
the response. In this paper, only spatial variables are considered,
d: (a) semi-analytical calculation, (b) transport sweeps.
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and the normalized contribution factor C in the problem domain D
is redefined as

CðrÞ¼ fðrÞ$f*ðrÞð
D

drfðrÞ$f*ðrÞ
(19)

The contribution factor introduces the forward solution playing
the role of the weight coefficient and guides the importance
function to be more reasonable in the model. It considers all con-
tributions of forward solution and adjoint solution, which is more
suitable than neutron importance as the importance function of
spatial decomposition. In the goal-oriented MCS method, the
contribution factor acts on the problem domain with two separate
parts: the MCS calculation part (A ¼ frjCðrÞ >DCg) and the rest
part (B ¼ D� A), where DC is a user-defined tolerance.
2.3. Dynamic quadrature technique

In the jðnÞ calculation, we use the MCS method for multi-
collision sources calculation via spatial decomposition. And in the
subsequent iterations, for the calculation of each angular flux, we
can use different angular quadrature sets. To achieve this, we need
criteria to choose which quadrature set would be most efficient for
each iteration. Here, we focus on the two error sources of the error
produced by changing the quadrature set in a certain iteration: the
relative quadrature error (εq) and the relative iterative error (εi).
The estimated total relative error (Etot) is a combination of the
relative iterative and quadrature errors

Etot � εq$εi <DE (20)

where DE is a user-defined error tolerance for the goal. When
changing the quadrature set from order N to N0 in a certain itera-
tion, Etot can be calculated as
Etot ¼
�
fð0Þ;N þ/þ fðiÞ;N þ fðiþ1Þ;N0 þ/þ fð∞Þ;N0�� �fð0Þ;N þ/þ fð∞Þ;N��

fð0Þ;N þ/þ fð∞Þ;N�
¼
�
f
ðiÞ;N
t � f

ð∞Þ;N
t

�
�
�
f
ðiÞ;N0

t � f
ð∞Þ;N0

t

�
f
ð∞Þ;N
t

(21)
where f
ðiÞ
t is the total scalar flux after i sweeps.

The relative quadrature error (εq) due to the quadrature change
is one of the error sources of the total relative error. The scattering
process tends to distribute the angular flux more evenly over an-
gles, we assume that the relative quadrature error goes down with
the number of iterations. To estimate the error of using a new
quadrature set, we perform an extra transport sweep with a lower-
order quadrature set after completing one iteration and compare
the two results.With the current iteration scalar flux (fðiÞ;N) and the
extra calculation scalar flux (fðiÞ;N0

), we can estimate the relative
quadrature error:

ε
ðiÞ
q ¼fðiÞ;N0 � fðiÞ;N

fðiÞ;N ; (22)

From (22), the total scalar flux with N0-order quadrature set can

be expressed by the following inequality using assumption ε
ðiþ1Þ
q �
2628
ε
ðiÞ
q

X∞
l¼iþ1

fðlÞ;N0 ¼
X∞
l¼iþ1

�
1þ ε

ðlÞ
q

�
fðlÞ;N0 �

�
1þ ε

ðiÞ
q

� X∞
l¼iþ1

fðlÞ;N (23)

Then, from (21) we obtain

Etot � εq
f
ð∞Þ;N
t � f

ðiÞ;N
t

f
ð∞Þ;N
t

(24)

Here, the second factor on the right side of (24) is the second
potential error source of the total relative error, which does not
depend on the quadrature formula. This error source is defined as
the relative iterative error (εi)

f
ð∞Þ
t � f

ðiÞ
t

f
ð∞Þ
t

�f
ð∞Þ
t � f

ðiÞ
t

f
ðiÞ
t

¼ εi (25)

The source iteration of the linear Boltzmann equation exhibits
monotonic convergence. The scalar flux in each successive iteration
should decay by the spectral radius (s) after enough iterations. The
spectral radius should be less than 1 to ensure source iteration
scheme convergence. An equivalent definition, which allows s to be
estimated without knowing the limit of the sequence of iterates, is
given as

s¼ f
ðnÞ
t � f

ðn�1Þ
t

f
ðn�1Þ
t � f

ðn�2Þ
t

¼ fðnÞ

fðn�1Þ (26)

When the iteration reaches the convergence criterion, the error
between calculation results and exact solution is expressed as
follows

f
ð∞Þ
t �f

ðnÞ
t � s

1� s

�
f
ðnÞ
t �f

ðn�1Þ
t

�
¼ s

1� s
fðnÞ (27)
The relative iterative error estimate can thus be found by
inserting (26) and (27) into (25) to give

εi ¼
s

1� s

fðnÞ

f
ðnÞ
t

¼ fðnÞ�fðn�1Þ

1� fðnÞ�fðn�1Þ
fðnÞ

f
ðnÞ
t

(28)
2.4. Implementation

The previous sections have presented the criterion measures
suitable for spatial decomposition and dynamic quadrature. This
section describes how to use these criteria in the goal-orientedMCS
method. The simplest means to present this is in the form of
pseudo-code as shown in Algorithm 1 but the algorithmwill also be
described in the text.

Before the transport solution, the calculation for the forward and
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the adjointfluxes are done separately in the pre-processing stage and
used to estimate the contribution factor. The next step is to form a
spatial decomposition forMCS calculations based on the contribution
factor distribution. Therefore, we do not include the time spent in
calculating the contribution factor in the total GM calculation time.
The factor definitions are such that the region should be MCS calcu-
lation region if theuser-defined toleranceDC hasbeenmet. AfterMCS
calculation (l iterations, as shown in Algorithm 1), additional error
estimation is required as the driving force to reduce the quadrature
order since the quadrature set with high order may not be necessary
in the following iterations. If the estimated error is less than the
tolerance DE, the quadrature order is lowered.

Algorithm 1. The goal-oriented MCS method with dynamic
quadrature.

3. Results and discussion

The generation of contribution factor, algorithms of calculating
the multi-collision source, and model features determine the
2629
simulation efficiency and accuracy together. To investigate these
effects, this goal-oriented algorithm is applied to three Kobayashi
benchmarks [16]. The algorithm has been be implemented into the
three-dimensional particle transport code ARES [17] for assess-
ment. Table 1 lists the source strength and cross-section in three
cases of Kobayashi benchmarks. As a metric of error, the root mean
square of relative errors (ERMS) of the scalar flux was calculated, as
compared to the reference results. The ERMS can be calculated as
follow:

ERMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM
m¼1

 
fm � fm;ref

fm;ref

!2
vuut (29)

where m is the spatial index, M is the total number of spatial ele-
ments, fm is the calculated scalar flux, and fm;ref is the scalar flux of
the reference results.

In practical terms, it will be important to compare computation
time for a given level of error when comparing methods. Because of
the inability of analytical calculation for reflection boundary condi-
tions, vacuum boundary conditionswere imposed on all the external
boundaries in the standard MCS calculation. But for the goal-
oriented MCS calculation, the application of reflective boundary
conditions can significantly reduce the number of unknowns, which
is eight times difference between the two methods. Six calculation
schemes were used for testing and analysis of goal-oriented spatial
decomposition and dynamic quadrature technique: the standard SN
method, SN method with dynamic quadrature (DQ), the goal-
oriented MCS method with dynamic quadrature (GM-DQ), the
goal-oriented MCS method with full-scale model (GM-full), the
standardMCSmethodwith PNTN-S80 (SM-S80) and the standardMCS
method with ray tracing (SM-RT). The first three schemes use 1/8
model with reflective boundary and the last three schemes use full-
scale model. For the standard SN method, the transport equationwas
solved with PNTN-S32 or PNTN-S60, respectively. For dynamic quad-
rature, a smooth quadrature sequence including five PNTN quadra-
ture sets (S8/S16/S32/S40/S60) was used in the calculation. The manual
partitioning of the geometry in the SM scheme is done including the
source region and the void region, while the partitioning of the ge-
ometry in the GM scheme is goal-oriented based on the contribution
factor distribution (defined in (19)). The calculation models of for-
ward and adjoint calculations are same as the transport calculation.
PNTNeS32 is used for these calculations and the spatial discretization
scheme uses the Directional ThetaWeighted (DTW)with an iterative
convergence criterion of 10�4. The number of collisions set by GM
and SM was 1, meaning that both methods calculate the uncollided
flux and the first-collided fluxwith a high-order method (ray tracing
technology or PNTN-S80 quadrature set).

3.1. Kobayashi-I benchmark

The Kobayashi-I benchmark is a square shielding block con-
taining a cavity. An isotropic source is in the center of the cavity.
This model will allow the testing of the ability of our methods in
problems with a cavity. The calculation models of the SM and GM
are different, as shown in Fig. 2. The mesh used for the SM calcu-
lationwas composed of 100� 100� 100 Cartesian grids, but it used
only 50 � 50 � 50 grids for the GM calculation.

The results of the standard SN method with different quadrature
sets (S16eS60) prove that the maximum relative error locates at the
coordinate (95, 95, 95). On this account, the coordinate is defined as
the adjoint source region, and the adjoint calculation result is
shown in Fig. 3. Fig. 4 shows the contribution factor distribution at
different tolerances. For this model, the MCS calculation used a
user-defined tolerance DC of 1 � 10�5.



Table 1
Source strengths and cross-sections of Kobayashi benchmarks.

Regions Source/n$cm�3 s�1 Total Cross Sections/cm�1 Scattering Cross Sections/cm�1

1 1 0.1 0.05
2 0 10e4 0.5 � 10�4

3 0 0.1 0.05

Fig. 2. Geometries of the Kobayashi-I benchmark with different methods. (a) Configuration with the reflective boundary for GM calculation. (b) Configuration of full-scale for SM
calculation.

Fig. 3. Adjoint flux distribution for the Kobayashi-I benchmark.

Fig. 4. The contribution factor distribution plots for the Kobayashi-I benchmark at
different tolerances.
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The first issue that needs to be addressed is the balance of the
efficiency and accuracy of the dynamic quadrature. The tolerance
criterion (DE) directly affects the number of quadrature sets used.
For a list of quadrature, the more iterations are performed at the
high quadrature the more computation time. The calculations were
repeated using the dynamic quadrature SN method for tolerances
from 0.5 to 0.001. Results including CPU times and usage of five
different quadrature sets are given in Fig. 5. With decreasing, more
iterations are performed at the higher quadrature, and the
computation time increases. The transition of the quadrature order
from high to low appear to fit a pattern that the angular flux be-
comes extensive and isotropic as the iterations proceed. The results
obtained from the preliminary analysis of accuracy and efficiency
are shown in Fig. 6. Further analysis showed that all calculations of
the dynamic quadrature achieve the same accuracy level as the S60
result and show a speedup of between 1.26 and 2.48. As DE de-
creases, the ERMS decreases slightly, while the computation time
increases by a significant amount. It is also noted that regardless of
chosen parameters (quadrature and tolerance), this method
Fig. 5. Effect of the tolerance criterion (DE) on the number of times the quadrature
used and efficiency for the Kobayashi-I benchmark.



Fig. 6. Comparison of accuracy and efficiency with six calculation schemes for the
Kobayashi-I benchmark.

Fig. 9. The contribution factor distribution plots at different tolerances (a) Kobayashi-II
benchmark. (b) Kobayashi-III benchmark.
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performs better, so a priori knowledge of some optimal parameters
is not required to get a speedup.

Fig. 6 also illustrates some of the main characteristics of theMCS
methods. Comparing the two results, it can be seen from the data in
the figure that the GM-DQ calculation has more efficiency and
better precision than the SM-RT calculation. From the efficiency
standpoint, this is largely due to two reasons: First, the GM-DQ
calculation combines the dynamic quadrature, while the SM-RT
calculation does not. The second and most important reason is
that the two calculations are under different boundary conditions.
For the calculation of collided fluxes, the computational complexity
of ray tracing techniques may be higher than that of transport
sweeps. In each inner iteration, the calculation amount of transport
sweeps is the number of angular discrete directions multiplied by
the number of total grids, while the number of rays for ray tracing is
Fig. 8. Geometries of the Kobayashi-III benchmark with different methods. (a)

Fig. 7. Geometries of the Kobayashi-II benchmark with different methods. (a)

2631
the number of source grids multiplied by the number of total grids.
For three-dimensional problems, if the vacuum boundary replaces
the reflection boundary, to ensure integrity, the number of grids
will be several times more than the original, while the number of
angular directions will remain unchanged. In this way, the number
Configuration with the reflective boundary. (b) Configuration of full-scale.

Configuration with the reflective boundary. (b) Configuration of full-scale.
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of source grids in MCS calculation is much larger than angular
discrete directions, especially for the calculation of collided fluxes.
The computation amount of ray tracing is bound to be much larger
than that of the higher-order quadrature sets. In the comparison
between SM-S80 and SM-RT, the efficiency of SM-RT is significant
reduced due to its high computation complexity. It should also be
noted that the comparison between GM-full and SM-S80 indicates
that different spatial decomposition schemes may affect the
computational efficiency due to the different number of grids in
MCS calculation region.

From the standpoint of minimizing the ERMS, this is also due to
two reasons: Firstly, the accuracy of transport sweeps depends on
the ray effects caused by angular discretization and the numerical
diffusion caused by spatial discretization, while that of ray tracing
depends on the grid step-size of the source region. The comparison
between SM-S80 and SM-RT shows the difference between the
transport sweeps and ray tracing technique. It should be noted that
the numerical diffusionmaymutually compensatewith the angular
discretization error when the mesh is large. Secondly, SM-S80 and
GM-full have used dissimilar spatial decompositions. The GM-full
plan considering all contributions of forward and adjoint solution
is better than the original SM one based on model materials.
3.2. Kobayashi-II and Kobayashi-III benchmarks

The Kobayashi-II and Kobayashi-III benchmarks are employed to
demonstrate the ability of the GMmethod in problems with a duct.
Fig. 10. Effect of the tolerance criterion (DE) on the number of times the quadrature
used and efficiency. (a) Kobayashi-II benchmark. (b) Kobayashi-III benchmark.
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The Kobayashi II benchmark is a rectangular block made of a half-
scattering material containing a straight duct, and the Kobayashi-
III differs from Kobayashi-II in that it has a dog-leg duct. The
calculation models of the SM and GM are shown in Fig. 7 and Fig. 8.
The mesh used for the SM calculation was composed of
60 � 100 � 60 Cartesian grids, but it used only 30 � 50 � 30 grids
for the GM calculation.

For Kobayashi-II, because of the straight duct, the angular flux
anisotropy increases with distance from the source, and the relative
errors of the low-order quadrature sets strongly oscillate non-
physically along the duct. The coordinate (5,95,5) is defined as
the adjoint source region. The Kobayashi-III is the most difficult
Kobayashi problem since particles tend to stream along the dog-leg
duct. The duct outlet coordinate (35, 95, 35) is defined as the
adjoint source region. Fig. 9 shows the contribution factor distri-
bution at different tolerances. For this model, the MCS calculation
used a user-defined tolerance DC of 1 � 10�5, which is the same as
that of Kobayashi-I. It is noted that the Kobayashi problems have
been addressed to a limited extend with the same user-defined
tolerance of 1 � 10�5, but much more computational experience
is needed before the efficacy of current approaches is fully
demonstrated.

Fig. 10 provides the CPU times and usage of five different
quadrature sets among the four cases of the tolerance criterion for
dynamic quadrature. It is apparent from Figs. 5 and 10 that, when
DE¼ 10�1, S32 quadrature set was called 5 times in the Kobayashi-II
benchmark, while it was called only twice in the Kobayashi-I
Fig. 11. Comparison of accuracy and efficiency with six calculation schemes. (a)
Kobayashi-II benchmark. (b) Kobayashi-III benchmark.
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benchmark. It indicates that the number of quadrature set calls is
problem-dependent. Several explanations for these results are
possible. For radiation transport problems that featured high
anisotropy throughout the duct regions, transport sweep requires
numerous angular unknowns to achieve the desired accuracy,
which means that the quadrature order is difficult to reduce. Even
with enough iterations, the algorithm may be still using a high-
order quadrature set.

The results obtained from the preliminary analysis of accuracy
and efficiency are shown in Fig. 11. The results also indicate that the
goal-oriented MCS method outperforms the standard SN method,
SNmethodwith dynamic quadrature and the standardMCSmethod
for the same desired level of accuracy. For the Kobayashi-II
benchmark, the GM-DQ with a time of 106.27s produces an ERMS of
Table 2
Relative errors for the Kobayashi-I Benchmark.

Key Points/cm PNTN-S60 SM-RT GM-DQ

Relative Error

(5,5,5) 0.37% 6.25% 0.34%
(5,15,5) �0.07% 4.30% �0.23%
(5,25,5) 0.86% 2.78% 0.45%
(5,35,5) 0.71% 1.87% 0.93%
(5,45,5) �1.34% �0.04% 0.77%
(5,55,5) �3.23% �1.14% �0.61%
(5,65,5) �2.56% 0.41% �1.56%
(5,75,5) �0.16% 0.68% �1.53%
(5,85,5) 1.92% 0.98% �0.37%
(5,95,5) 3.65% 2.87% 1.99%
(15,15,15) �0.19% 0.83% �0.22%
(25,25,25) �0.41% 0.98% �0.37%
(35,35,35) �0.25% �0.21% �0.65%
(45,45,45) �0.05% 1.77% �0.16%
(55,55,55) 1.52% 0.88% 2.48%

Table 3
Relative errors for the Kobayashi-II Benchmark.

Key Points/cm PNTN-S60 SM-RT GM-DQ

Relative Error

(5,5,5) 0.37% 3.25% 0.37%
(5,15,5) 0.58% 1.87% �0.13%
(5,25,5) 0.92% 1.97% 0.55%
(5,35,5) 0.63% 2.40% 0.85%
(5,45,5) �0.80% 1.69% 0.38%
(5,55,5) �2.98% �0.74% �0.70%
(5,65,5) �3.96% �0.36% �1.61%

Table 4
Relative errors for the Kobayashi-III Benchmark.

Key Points/cm PNTN-S60 SM-RT GM-DQ

Relative Error

(5,5,5) 0.35% 2.43% 0.33%
(5,15,5) 0.56% 1.49% �0.19%
(5,25,5) 0.90% 1.22% 0.40%
(5,35,5) 0.60% 1.09% 0.85%
(5,45,5) �0.81% 1.02% 0.62%
(5,55,5) �2.97% 0.90% �0.44%
(5,65,5) �3.40% 0.34% �1.97%
(5,75,5) �1.32% 0.08% �2.26%
(5,85,5) 1.00% 0.75% �1.47%
(5,95,5) 1.92% 1.45% �0.43%
(5,55,5) �2.97% 0.90% �0.44%
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1.41 � 10�2, whereas the SM-RT with a time of 3566.81s produces
an ERMS of 3.82 � 10�2. Also, for the Kobayashi-III benchmark, the
GM-DQ with a time of 116.14s produces an ERMS of 1.05 � 10�2,
whereas the SM-RT with a time of 1577s produces an ERMS of
2.00 � 10�2. And the speedups arrive at 33.56 and 13.58. The
reflection boundary is the main reason for such a huge difference,
as analyzed in the Kobayashi- I benchmark above.

The results of the standard SN method with PNTN-S60, SM-RT and
GM-DQ schemes are compared with the benchmark solution in
Ref. [16], and the relative errors are listed in Tables 2e4. As Table 2
shows, in the source region, the GM-DQ produces a relative error of
0.34%, whereas the SM-RT produces a relative error of 6.25%.
However, the maximum relative error of the GM-DQ is about 4.21%
at coordinate (75, 75, 75), while the relative error of the SM-RT at
Key Points/cm PNTN-S60 SM-RT GM-DQ

Relative Error

(65,65,65) �0.02% �2.06% �2.14%
(75,75,75) �0.88% �2.61% �4.21%
(85,85,85) �5.14% �2.80% �2.19%
(95,95,95) �7.86% �1.13% �3.00%
(5,55,5) �3.23% �1.14% �0.61%
(15,55,5) �1.69% 0.44% 0.12%
(25,55,5) �2.01% �0.16% �0.80%
(35,55,5) �2.39% 0.46% �1.71%
(45,55,5) �2.30% 0.22% �2.42%
(55,55,5) �1.67% 0.08% �3.04%
(65,55,5) 0.03% 0.27% �1.68%
(75,55,5) 0.60% 0.96% �0.70%
(85,55,5) 0.83% 1.13% 0.38%
(95,55,5) 1.40% 2.33% 1.51%

Key Points/cm PNTN-S60 SM-RT GM-DQ

Relative Error

(5,75,5) �2.58% 1.80% �2.40%
(5,85,5) �0.15% 4.02% �2.25%
(5,95,5) 0.90% 5.44% �1.24%
(15,95,5) 1.23% 2.59% 3.12%
(25,95,5) 2.26% 6.70% 1.54%
(35,95,5) 1.28% 3.63% 0.06%
(45,95,5) �0.12% 6.14% �0.93%
(55,95,5) 0.30% 5.02% �0.69%

Key Points/cm PNTN-S60 SM-RT GM-DQ

Relative Error

(15,55,5) 0.92% 2.33% 1.95%
(25,55,5) 0.00% 2.39% 0.75%
(35,55,5) 0.97% 2.66% 0.34%
(45,55,5) �0.31% 3.43% 0.41%
(55,55,5) �0.42% 3.81% 0.28%
(5,95,35) �2.15% 1.49% �0.02%
(15,95,35) 1.49% 1.30% 0.51%
(25,95,35) �0.50% 1.07% 0.32%
(35,95,35) 1.56% 2.40% 1.15%
(45,95,35) 0.55% 3.51% 0.24%
(55,95,35) 4.12% 2.06% 2.21%
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the same coordinate is only 2.61%. As can be seen from Table 3, in
the source region, the GM-DQ produces a relative error of 0.37%,
whereas the SM-RT produces a relative error of 3.25%. However, the
maximum relative error of the GM-DQ is about 3.12% at coordinate
(15, 95, 5), while the relative error of the SM-RT at the same co-
ordinate is only 2.59%. From Table 4, we can see that the GM-DQ
produces a relative error of 0.33% in the source region, whereas
the SM-RT produces a relative error of 2.43%. However, the
maximum relative error of the GM-DQ is about 2.26% at coordinate
(5,75,5), while the relative error of the SM-RT at the same coordi-
nate is only 0.08%. For each benchmark, the scalar flux in the source
region is overestimated when the ray tracing technique is used,
while the results of transport sweeps are satisfactory. The results
reflect the restrictions of the ray tracing technique. The ray tracing
calculation is on a straight line between a source point and target
mesh center. If the model is divided too coarsely, the flux calcula-
tionwill produce large errors. On the other hand, the relative errors
perform irregular changing with increasing distance from the
source due to ray effects, the result of ray tracing is better than that
of transport sweeps in the area far away from the source. The
advantage of the transport sweep is that it can exactly describe the
scalar flux in the source region, and the advantage of ray tracing is
to effectively mitigate the ray effects.

4. Conclusions

In this paper, a goal-oriented multi-collision source method was
proposed to solve the linear Boltzmann equation, specifically for
application to problems containing void regions and ducts. This
algorithm uses spatial decomposition based on contribution factor
and dynamic quadrature technique to adaptively determine the
partitioning of the geometry and dynamically change the angular
quadrature order in the remaining iterations. Numerical results
through detailed quantitative analysis indicate that both compu-
tation accuracy and efficiency are taken in account for the goal-
oriented multi-collision source method compared with the stan-
dardMCSmethod. In Kobayashi problemswith cavities and straight
ducts, the goal-oriented method exhibits the same accuracy with a
speedup of approximately 2 compared to the standard SN calcula-
tion, while speedups are more than 10 compared to the standard
MCS calculation. The numerical simulations have proved that the
proposed method is more accurate and effective than the standard
MCS method in solving problems with reflective boundary condi-
tions. Although more comparisons with practical problems are
necessary before the efficiency of our method is fully demon-
strated, the results presented here are illuminating. It should be
noted that transport sweep with high-order quadrature sets cannot
mitigate the ray effects far away from the source. Additionally, for
the dynamic quadrature technique, the way of the quadrature error
based on scalar fluxes is inefficient. Future studies will focus on the
parallel strategy and extend the goal-oriented multi-collision
2634
source method to multiple sets of complex radiation transport
problems.
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