• Title/Summary/Keyword: power state

Search Result 5,793, Processing Time 0.038 seconds

Testbed of Power MOSFET Aging Including the Measurement of On-State Resistance (전력용 MOSFET의 온-상태 저항 측정 및 노화 시험 환경 구축)

  • Shin, Joonho;Shin, Jong-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.3
    • /
    • pp.206-213
    • /
    • 2022
  • This paper presents setting up a laboratory-scale testbed to estimate the aging of power MOSFET devices and integrated power modules by measuring its on-state voltage and current. Based on the aging mechanisms of the component inside the power module (e.g., bond-wire, solder layer, and semiconductor chip), a system to measure the on-state resistance of device-under-test (DUT) is designed and experimented: a full-bridge circuit applies current stress to DUT, and a temperature chamber controls the ambient temperature of DUT during the aging test. The on-state resistance of SiC MOSFET measured by the proposed testbed was increased by 2.5%-3% after 44-hour of the aging test.

A Novel Non-contact Measurement Method for the Detection of Current Flowing Through Concealed Conductors

  • Yang, Fan;Liu, Kai;Zhu, Liwei;Hu, Jiayuan;Wang, Xiaoyu;Shen, Xiaoming;Luo, Hanwu;Ammad, Jadoon
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.43-48
    • /
    • 2017
  • In order to detect the current flowing through concealed conductor, this paper proposes a new method based on derivative method. Firstly, this paper analyzes the main peak characteristic of the derivative function of magnetic field generated by a current-carrying conductor, and a relationship between the current flowing through the conductor and the main peak of the derivative function is obtained and applied to calculate the current. Then, the method is applied to detect the conductor current flowing through grounding grids of substations. Finally, the numerical experimental and field experiment verified the feasibility and accuracy of the method, and the computing results show that the method can effectively measure the conductor current of grounding grids with low error, and the error is within 5 %.

The Quantitative Evaluation of Aging State of Field Composite Insulators Based on Trap Characteristics and Volume Resistivity-Temperature Characteristics

  • Liang, Ying;Gao, Li-Juan;Dong, Ping-Ping;Gao, Ting
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1355-1362
    • /
    • 2018
  • In order to obtain a better understanding of the ageing process of the field composite insulators, it is necessary to explore a quantitative-valuation method for the aging state evaluation. And the linear relationship between volume resistivity and temperature is proposed. In this paper, the composite insulators with different lengths of operating lives from two manufacturers were tested. The relationship between trap characteristics and volume resistivity-temperature characteristics were analyzed based on Thermal Stimulated Current (TSC), volume resistivity-temperature test, Scanning Electron Microscope (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). Furthermore, the application of trap characteristics in the quantitative evaluation of aging state of composite insulators was discussed. The results showed that there was a general negative correlation between the relative variation ratio of trap charges and the volume resistivity-temperature characteristics. Meanwhile, the physicochemical properties would change with the aging time, which would result in the increasing of electron traps. Combined with the TSC and volume resistivity test results, the trap characteristic thresholds which indicated the serious age of the composite insulators had been proposed.

State Estimation in Subway Power Systems (지하철 전력 시스템 대한 상태추정)

  • Ryu, Heon-Su;Ha, Un-Gwan;Mun, Yeong-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.1
    • /
    • pp.29-36
    • /
    • 2002
  • It is required that the current state of system should be Precisely monitored for efficient and safe operation of the subway power system and it is an important Problem to secure the high quality data for state estimation. The current state of subway power system is estimated by using data transmitted to control center from every measuring instrument. The high accuracy and trust can be maintained if the measured data have a high quality. But it is difficult to estimate the accurate state of system because of the noises in transmitted data and the inaccuracy of measuring instruments. So the object is to reduce the difference between the real values and the measured values in order to improve considerably the inaccuracy due to Instrumental errors and transmission noises using the state estimation method. In this paper, we proposes a new state estimation to estimate the accurate state of the subway power system from the measured values of a Sang-In station in Daegu subway and consider the possibility of application to the real subway power system. on the basis of that. The simulation results show to make sure of the possibility to apply to the real system usefully.

Analysis of Switching Clamped Oscillations of SiC MOSFETs

  • Ke, Junji;Zhao, Zhibin;Xie, Zongkui;Wei, Changjun;Cui, Xiang
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.892-901
    • /
    • 2018
  • SiC MOSFETs have been used to improve system efficiency in high frequency converters due to their extremely high switching speed. However, this can result in undesirable parasitic oscillations in practical systems. In this paper, models of the key components are introduced first. Then, theoretical formulas are derived to calculate the switching oscillation frequencies after full turn-on and turn-off in clamped inductive circuits. Analysis indicates that the turn-on oscillation frequency depends on the power loop parasitic inductance and parasitic capacitances of the freewheeling diode and load inductor. On the other hand, the turn-off oscillation frequency is found to be determined by the output parasitic capacitance of the SiC MOSFET and power loop parasitic inductance. Moreover, the shifting regularity of the turn-off maximum peak voltage with a varying switching speed is investigated on the basis of time domain simulation. The distortion of the turn-on current is theoretically analyzed. Finally, experimental results verifying the above calculations and analyses are presented.

Pressure Contact Interconnection for High Reliability Medium Power Integrated Power Electronic Modules

  • Yang, Xu;Chen, Wenjie;He, Xiaoyu;Zeng, Xiangjun;Wang, Zhaoan
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.544-552
    • /
    • 2009
  • This paper presents a novel spring pressure contact interconnect technique for medium power integrated power electronics modules (IPEMs). The key technology of this interconnection is a spring which is made from Be-Cu alloy. By means of the string pressure contact, sufficient press-contact force and good electrical interconnection can be achieved. Another important advantage is that the spring exhibits excellent performance in enduring thermo-mechanical stress. In terms of manufacture procedure, it is also comparatively simple. A 4 kW half-bridge power inverter module is fabricated to demonstrate the performance of the proposed pressure contact technique. Electrical, thermal and mechanical test results of the packaged device are reported. The results of both the simulation and experiment have proven that a good performance can be achieved by the proposed pressure contact technique for the medium power IPEMs.

Hybrid Double Direction Blocking Sub-Module for MMC-HVDC Design and Control

  • Zhang, Jianpo;Cui, Diqiong;Tian, Xincheng;Zhao, Chengyong
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1486-1495
    • /
    • 2019
  • Dealing with the DC link fault poses a technical problem for an HVDC based on a modular multilevel converter. The fault suppressing mechanisms of several sub-module topologies with DC fault current blocking capacity are examined in this paper. An improved half-bridge sub-module topology with double direction control switch is also designed to address the additional power consumption problem, and a sub-module topology called hybrid double direction blocking sub module (HDDBSM) is proposed. The DC fault suppression characteristics and sub-module capacitor voltage balance problem is also analyzed, and a self-startup method is designed according to the number of capacitors. The simulation model in PSCAD/EMTDC is built to verify the self-startup process and the DC link fault suppression features.

Harmonic State Estimation in Power System (전력시스템 고조파 상태 추정에 관한 연구)

  • Park, H.C.;Lee, J.P.;Wang, Y.P.;Chong, H.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.117-120
    • /
    • 2002
  • Electrical power system has very complexity problem that it is plan measurement system to achieve Harmonic State Estimation (HSE). This complexity problem depends on discord of necessary accuracy, certainty of noise that exist in data communication damage and converter, adaptability of network modification and minimum of expense size of system, estimated monitering. Also, quantity of available measurement equipment for harmonic measurement has been limited. Therefore, systematic method that choose measurement location for harmonic state estimation. This paper is that see proposed HSE that use Observability Analysis(OA) for harmonic state estimation of electrical power system. OA depends on measurement number, measurement location and measurement form here, it is analysis method that depend on network form and admittance of the system. OA used achieve harmonic state estimation that it is Applied to New Zealand electrical power system to prove validity of HSE algorithm that propose. This study result about harmonic state estimation of electrical power system displayed very economical and effective method by OA.

  • PDF

Impact of axial power distribution on thermal-hydraulic characteristics for thermionic reactor

  • Dai, Zhiwen;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3910-3917
    • /
    • 2021
  • Reactor fuel's power distribution plays a vital role in designing the new generation thermionic Space Reactor Power Systems (SRPS). In this paper, the 1/12th SPACE-R's full reactor core was numerically analyzed with two kinds of different axial power distribution, to identify their impacts on thermal-hydraulic and thermoelectric characteristics. In the benchmark study, the maximum error between numerical results and existing data or design values ranged from 0.2 to 2.2%. Four main conclusions were obtained in the numerical analysis: a) The axial power distribution has less impact on coolant temperature. b) Axial power distribution influenced the emitter temperature distribution a lot, when the core power was cosine distributed, the maximum temperature of the emitter was 194 K higher than that of the uniform power distribution. c) Comparing to the cosine axial power distribution, the uniform axial power distribution would make the maximum temperature in each component of the reactor core much lower, reducing the requirements for core fuel material. d) Voltage and current distribution were similar to the axial electrode temperature distribution, and the axial power distribution has little effect on the output power.

QoE-aware Energy Efficiency Maximization Based Joint User Access Selection and Power Allocation for Heterogeneous Network

  • Ji, Shiyu;Tang, Liangrui;Xu, Chen;Du, Shimo;Zhu, Jiajia;Hu, Hailin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4680-4697
    • /
    • 2017
  • In future, since the user experience plays a more and more important role in the development of today's communication systems, quality of experience (QoE) becomes a widely used metric, which reflects the subjective experience of end users for wireless service. In addition, the energy efficiency is an increasingly important problem with the explosive growth in the amount of wireless terminals and nodes. Hence, a QoE-aware energy efficiency maximization based joint user access selection and power allocation approach is proposed to solve the problem. We transform the joint allocation process to an optimization of energy efficiency by establishing an energy efficiency model, and then the optimization problem is solved by chaotic clone immune algorithm (CCIA). Numerical simulation results indicate that the proposed algorithm can efficiently and reliably improve the QoE and ensure high energy efficiency of networks.