• Title/Summary/Keyword: power performance testing

Search Result 466, Processing Time 0.03 seconds

A Study on the Low Noise Medical SMPS (의료용 SMPS 개발 및 노이즈 감소 대책에 대한 연구)

  • 이정우;김응석;김기만;윤형로
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.2 no.1
    • /
    • pp.53-58
    • /
    • 2001
  • The main noise sources in SMPS are divided into three parts: the switching devices, the rectifiers in secondary part, the output transformer and choke coil. In this paper we performed the noise analysis with respect to bobbin type and winding method, and designed an optimized transformer focusing on the transformer. For the comparison. we measured four parameters for each cases, including EMI conducted emission noise. signal from the switching devices, output ripple/noise voltage and leakage current. As the result, the transformer using a vertically-typed bobbin and a parallel, sandwich winding method showed the best performance. We confirmed that the SMPS developed in this research is satisfied with the IEC 601-1 international standard for the medical instrumentation. by testing its electrical characteristics and safety.

  • PDF

The Hydraulic System Modeling and Analysis of the Clutch Direct Control of an Automatic Transmission for a Forklift Truck (지게차 자동변속기의 클러치 직접 제어 유압 시스템 모델링 및 해석)

  • Oh, Joo-Young;Lee, Guen-Ho;Song, Chang-Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.112-119
    • /
    • 2009
  • An automatic transmission of construction equipment is controlled by hydraulic and electronic system for doing in various functions like as shifting and operation. The shifting is operated by the engaged and disengaged clutch motion from hydraulic power. On the shifting process, suitable pressure control to the clutch is required for smooth shifting. Hydraulic control system in the automatic transmission is divided by the pilot control type and the direct control type greatly. The direct control type has an advantage than the pilot control type. Because the structure is simple, the design and the manufacture are having less troubles and the system can be maximized precision pressure control. However, the excellent performance proportional control valve should be used to achieve proper control-ability. In this study, the dynamic analysis model composing the automatic transmission and hydraulic system for forklift truck is presented to simulate the characteristics of hydraulic system about the direct control type. That model is verified the validity compared the results of the testing examination. Parameters of input signal are analyzed to reduce the output torque according to input control signal is affected in shifting characteristic.

A Feasibility Study for Application of Single-Chip Solution for Diagnostic Resting ECG (ECG 원칩 솔루션의 진단용 심전계 적용을 위한 타당성 연구)

  • Kang, Bum-Sun;Choi, Gi Sang
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.86-94
    • /
    • 2015
  • In order for medical devices to be used outside hospital, they have to be not only of small size but also power consumption has to be kept at low level. This study investigates the feasibility of application of ADS1298 ECG single-chip solution developed by Texas Instruments Inc. for use in development of a new platform for diagnostic resting ECG. To prove the feasibility of commercial products based on the ADS1298 chip, the performance of the ADS1298 chip was measured in terms of input impedance, common mode rejection, frequency response, and input dynamic range using the testing method under the suitability criteria of the IEC 60601-2-25 standard. Result of the this study shows that commercialization of the ECG products based on the ADS1298 ECG single-chip solution that satisfies the international standards would be possible, if the manufactures take the filter characteristics into account in building a new platform for diagnostic resting ECG.

Unsynchronized Duty-cycle Control for Sensor Based Home Automation Networks

  • Lee, Dong-Ho;Chung, Kwang-Sue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.4
    • /
    • pp.1076-1089
    • /
    • 2012
  • Home automation networks are good environments for merging sensor networks and consumer electronics technologies. It is very important to reduce the energy consumption of each sensor node because sensor nodes operate with limited power based on a battery that cannot be easily replaced. One of the primary mechanisms for achieving low energy operation in energy-constrained wireless sensor networks is the duty-cycle operation, but this operation has several problems. For example, unnecessary energy consumption occurs during synchronization between transmission schedules and sleep schedules. In addition, a low duty-cycle usually causes more performance degradation, if the network becomes congested. Therefore, an appropriate control scheme is required to solve these problems. In this paper, we propose UDC (Unsynchronized Duty-cycle Control), which prevents energy waste caused by unnecessary preamble transmission and avoids congestion using duty-cycle adjustment. In addition, the scheme adjusts the starting point of the duty-cycle in order to reduce sleep delay. Our simulation results show that UDC improves the reliability and energy efficiency while reducing the end-to-end delay of the unsynchronized duty-cycled MAC (Media Access Control) protocol in sensor-based home automation networks.

DEVELOPMENT OF RPS TRIP LOGIC BASED ON PLD TECHNOLOGY

  • Choi, Jong-Gyun;Lee, Dong-Young
    • Nuclear Engineering and Technology
    • /
    • v.44 no.6
    • /
    • pp.697-708
    • /
    • 2012
  • The majority of instrumentation and control (I&C) systems in today's nuclear power plants (NPPs) are based on analog technology. Thus, most existing I&C systems now face obsolescence problems. Existing NPPs have difficulty in repairing and replacing devices and boards during maintenance because manufacturers no longer produce the analog devices and boards used in the implemented I&C systems. Therefore, existing NPPs are replacing the obsolete analog I&C systems with advanced digital systems. New NPPs are also adopting digital I&C systems because the economic efficiencies and usability of the systems are higher than the analog I&C systems. Digital I&C systems are based on two technologies: a microprocessor based system in which software programs manage the required functions and a programmable logic device (PLD) based system in which programmable logic devices, such as field programmable gate arrays, manage the required functions. PLD based systems provide higher levels of performance compared with microprocessor based systems because PLD systems can process the data in parallel while microprocessor based systems process the data sequentially. In this research, a bistable trip logic in a reactor protection system (RPS) was developed using very high speed integrated circuits hardware description language (VHDL), which is a hardware description language used in electronic design to describe the behavior of the digital system. Functional verifications were also performed in order to verify that the bistable trip logic was designed correctly and satisfied the required specifications. For the functional verification, a random testing technique was adopted to generate test inputs for the bistable trip logic.

A Robust EWMA Control Chart (로버스트 지수가중 이동평균(EWMA) 관리도)

  • Nam, Ho-Soo;Lee, Byung-Gun;Joo, Cheol-Min
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.1
    • /
    • pp.233-241
    • /
    • 1999
  • Control chart is a very extensively used tool in testing whether a process is in a state of statistical control or not. In this paper, we propose a robust EWMA(exponentially weighted moving averages) control chart for variables, which is based on the Huber's M-estimator. The Huber's M-estimator is a well-known robust estimator in sense of distributional robustness. In the proposed chart, the estimation of the process deviation is modified to have a s table level and high power. To compare the performances of the proposed control chart with other charts, some Monte Carlo simulations we performed. The simulation results show that the robust EWMA control chart has good performance.

  • PDF

Core Loss Effects on Electrical Steel Sheet of Wound Rotor Synchronous Motor for Integrated Starter Generator

  • Lee, Choong-Sung;Kim, Ji-Hyun;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.148-154
    • /
    • 2015
  • 48-V ISG (Integrated Starter Generator) system has attracted attention to improve the fuel efficiency of ICE (Internal Combustion Engine) vehicle. One of the key components that significantly affects the cost and performance of the 48-V ISG system is the motor. In an ISG motor, the core and copper loss make the motor efficiency change because the motor has a broad driving operated range and more diverse driving modes compared with other motors. When designing an ISG motor, the selection of an electrical steel sheet is important, because the electrical steel sheet directly influences the efficiency of the motor. In this paper, the efficiency of the ISG motor, considering core loss and copper loss, is analyzed by testing different types of electrical steel sheets with respect to the driving speed range and mode. Using the results of a finite element method (FEM) analysis, a method to select the electrical steel sheet is proposed. This method considers the cost of the steel sheet and the efficiency according to driving mode frequency during the design process of the motor. A wound rotor synchronous machine (WRSM) was applied to the ISG motor in this study.

A Study on Reliability Improvement of BLDC Motor for Combat Vehicle in High Temperature Environment (고온 환경에서의 전투차량용 BLDC 모터 신뢰성 향상에 관한 연구)

  • Yoon, Hyo-Jin;Nam, Yoon-Wook;Park, Kyoung-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.97-102
    • /
    • 2018
  • Combat vehicles require high levels of maneuverability, firepower, armor, and operability. A high-performance power system is required for optimal maneuverability. The fuel pump which supplies fuel stably is very important to achieve this. The fuel pump consists of a pump part, a motor part, and a control part. It is equipped with a BLDC motor. Numerous failures of the fuel pump occurred during vehicle operation when exposed to vibration, shock, and high temperature. The cause of failure was confirmed to be stator slip of the BLDC motor. Stator slip is a consequence of the interference loss between the stator and the housing of the motor part in an high temperature environment. The failure of the fuel pump was solved through size control of the motor housing and the stator. We performed vibration testing at high temperature for verification. This study contributes to improving the reliability of combat vehicles.

Influence and analysis of a commercial ZigBee module induced by gamma rays

  • Shin, Dongseong;Kim, Chang-Hwoi;Park, Pangun;Kwon, Inyong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1483-1490
    • /
    • 2021
  • Many studies are undertaken into nuclear power plants (NPPs) in preparation for accidents exceeding design standards. In this paper, we analyze the applicability of various wireless communication technologies as accident countermeasures in different NPP environments. In particular, a commercial wireless communication module (WCM) is investigated by measuring leakage current and packet error rate (PER), which vary depending on the intensity of incident radiation on the module, by testing at a Co-60 gamma-ray irradiation facility. The experimental results show that the WCMs continued to operate after total doses of 940 and 1097 Gy, with PERs of 3.6% and 0.8%, when exposed to irradiation dose rates of 185 and 486 Gy/h, respectively. In short, the lower irradiation dose rate decreased the performance of WCMs more than the higher dose rate. In experiments comparing the two communication protocols of request/response and one-way, the WCMs survived up to 997 and 1177 Gy, with PERs of 2% and 0%, respectively. Since the request/response protocol uses both the transmitter and the receiver, while the one-way protocol uses only the transmitter, then the electronic system on the side of the receiver is more vulnerable to radiation effects. From our experiments, the tested module is expected to be used for design-based accidents (DBAs) of "Category A" type, and has confirmed the possibility of using wireless communication systems in NPPs.

Influence of trailing edge serration in the wake characteristics of S809 airfoil

  • Mano Sekar;Amjad Ali Pasha;Nadaraja Pillai Subramania
    • Wind and Structures
    • /
    • v.37 no.1
    • /
    • pp.15-23
    • /
    • 2023
  • The wake behavior of extended flat plate and serration in the trailing edge of S809 airfoil is presented in this experimental study using wind tunnel testing. The clustering of wind turbines in wind parks has recently been a pressing issue, due to the expected increase in power output and deciding the number of wind turbines to be installed. One of the prominent factors which influence the performance of the subsequent wind turbines is the downstream wake characteristics. A series of wind tunnel investigations were performed to assess the downstream near wake characteristics of the S809 airfoil at various angles of attack corresponding to the Reynolds Number Re = 2.02 × 105. These experimental results revealed the complex nature of the downstream near wake characteristics featuring substantial asymmetry arising out of the incoherent flow separations prevailing over the suction and the pressure sides of the airfoil. Based on the experimental results, it is found that the wake width and the downstream velocity ratio decrease with an increase in the angle of attack. Nonetheless, the dissipation length and downstream velocity ratio increases proportionally in the downstream direction. Additionally, attempts were made to understand the physical nature of the near wake characteristics at 1C, 2C, 3C and 4C downstream locations.