Browse > Article
http://dx.doi.org/10.1016/j.net.2020.11.017

Influence and analysis of a commercial ZigBee module induced by gamma rays  

Shin, Dongseong (Korea Atomic Energy Research Institute)
Kim, Chang-Hwoi (Korea Atomic Energy Research Institute)
Park, Pangun (Department of Information and Communication Engineering, Chungnam University)
Kwon, Inyong (Korea Atomic Energy Research Institute)
Publication Information
Nuclear Engineering and Technology / v.53, no.5, 2021 , pp. 1483-1490 More about this Journal
Abstract
Many studies are undertaken into nuclear power plants (NPPs) in preparation for accidents exceeding design standards. In this paper, we analyze the applicability of various wireless communication technologies as accident countermeasures in different NPP environments. In particular, a commercial wireless communication module (WCM) is investigated by measuring leakage current and packet error rate (PER), which vary depending on the intensity of incident radiation on the module, by testing at a Co-60 gamma-ray irradiation facility. The experimental results show that the WCMs continued to operate after total doses of 940 and 1097 Gy, with PERs of 3.6% and 0.8%, when exposed to irradiation dose rates of 185 and 486 Gy/h, respectively. In short, the lower irradiation dose rate decreased the performance of WCMs more than the higher dose rate. In experiments comparing the two communication protocols of request/response and one-way, the WCMs survived up to 997 and 1177 Gy, with PERs of 2% and 0%, respectively. Since the request/response protocol uses both the transmitter and the receiver, while the one-way protocol uses only the transmitter, then the electronic system on the side of the receiver is more vulnerable to radiation effects. From our experiments, the tested module is expected to be used for design-based accidents (DBAs) of "Category A" type, and has confirmed the possibility of using wireless communication systems in NPPs.
Keywords
Wireless communication; ZigBee; Mesh network; NPP; DBA; TID effect; Radiation hardened device; Irradiation test; PER; Decommissioning;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Gomaa, I. Adly, K. Sharshar, A. Safwat, H. Ragai, Radiation tolerance assessment of commercial ZigBee wireless modules, IEEE Radiat. Eff. Data Work. 2015-Janua (2014) 1-5, https://doi.org/10.1109/REDW.2014.7004584.   DOI
2 M.H. Jeong, C.J. Sullivan, S. Wang, Complex radiation sensor network analysis with big data analytics, 2015, IEEE Nucl. Sci. Symp. Med. Imaging Conf. NSS/MIC 2015 (2016), https://doi.org/10.1109/NSSMIC.2015.7581760, 1-4.   DOI
3 M. Nancekievill, J. Espinosa, S. Watson, B. Lennox, A. Jones, M.J. Joyce, J.I. Katakura, K. Okumura, S. Kamada, M. Katoh, K. Nishimura, Detection of simulated fukushima daichii fuel debris using a remotely operated vehicle at the naraha test facility, Sensors (2019), https://doi.org/10.3390/s19204602.   DOI
4 K. Vetter, R. Barnowski, J.W. Cates, A. Haefner, T.H.Y. Joshi, R. Pavlovsky, B.J. Quiter, Advances in nuclear radiation sensing: enabling 3-D gamma-ray vision, Sensors (2019) 19, https://doi.org/10.3390/s19112541.   DOI
5 B.J. Blaney, E.P. Management, Benefit by Installing Reliable, Secure Wireless Communications Networks at Your Plant Mid-year Meeting, 2012.
6 F. Marturano, J.F. Ciparisse, A. Chierici, F. D'errico, D. Di Giovanni, F. Fumian, R. Rossi, L. Martellucci, P. Gaudio, A. Malizia, Enhancing radiation detection by drones through numerical fluid dynamics simulations, Sensors (2020), https://doi.org/10.3390/s20061770.   DOI
7 R.T. Johnson, F.V. Thome, C.M. Craft, A survey of aging of electronics with application to nuclear power plant instrumentation, IEEE Trans. Nucl. Sci. (1983), https://doi.org/10.1109/TNS.1983.4333137.   DOI
8 K. Korsah, R.T. Wood, O. Ridge, O. Ridge, C.E. Antonescu, U.S.N.R. Commission, Application of Microprocessor-Based Equipment in Nuclear Power Plants C Technical Basis for a Qualification Methodology, 2008.
9 M. Manghisoni, L. Ratti, V. Re, V. Speziali, G. Traversi, A. Candelori, Comparison of ionizing radiation effects in 0.18 and 0.25 ㎛ CMOS technologies for analog applications, IEEE Trans. Nucl. Sci. 50 (2003) 1827-1833, https://doi.org/10.1109/TNS.2003.820767.   DOI
10 J.R. Schwank, M.R. Shaneyfelt, D.M. Fleetwood, J.A. Felix, P.E. Dodd, P. Paillet, V. Ferlet-Cavrois, Radiation effects in MOS oxides, IEEE Trans. Nucl. Sci. 55 (2008) 1833-1853, https://doi.org/10.1109/TNS.2008.2001040.   DOI
11 O. Ridge, U.S.N.R. Commission, Assessment of Wireless Technologies and Their Application at Nuclear Facilities Assessment of Wireless Technologies and Their Application at Nuclear Facilities, 2004.
12 J.J. Wang, S. Samiee, H.S. Chen, C.K. Huang, M. Cheung, J. Borillo, S.N. Sun, B. Cronquist, J. McCollum, Total ionizing dose effects on flash-based field programmable gate array, IEEE Trans. Nucl. Sci. 51 (2004) 3759-3766, https://doi.org/10.1109/TNS.2004.839255.   DOI
13 S. Kim, J. Lee, I. Kwon, D. Jeon, TID-tolerant inverter designs for radiation-hardened digital systems, Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. (2020), https://doi.org/10.1016/j.nima.2018.10.151.   DOI
14 B. Mossawir, I.R. Linscott, U.S. Inan, J.L. Roeder, J.V. Osborn, S.C. Witczak, E.E. King, S.D. LaLumondiere, A TID and SEE radiation-hardened, wideband, low-noise amplifier, in: IEEE Trans. Nucl. Sci., 2006, https://doi.org/10.1109/TNS.2006.886219.   DOI
15 Digi international inc, Available online, https://www.digi.com/products/embedded-systems/digi-xbee/rf-modules/2-4-ghz-modules/xbee-digimesh-2-4. (Accessed 30 March 2020).
16 D. Custodian, E.S. Agency, TOTAL DOSE STEADY-STATE IRRADIATION TEST METHOD ESCC Basic Specification No . 22900, 2007, pp. 1-17. Test.
17 L. Schmidt, A. Horta, S. Pereira, A. Delicado, The Fukushima nuclear disaster and its effects on media framing of fission and fusion energy technologies, 4th Int. Conf. Adv. Nucl. Instrum. Meas. Methods Their Appl. ANIMMA 2015 (2015), https://doi.org/10.1109/ANIMMA.2015.7465637, 2015.   DOI
18 S. Gaillot, B. Pouchin, J.G. Marques, I. Lopez-Calle, F.J. Franco, J.A. Agapito, Jules Horowitz reactor project. Exploration tests concerning WIFI modules behaviour under gamma flux, Proc. Eur. Conf. Radiat. Its Eff. Components Syst. RADECS. (2011) 795-799, https://doi.org/10.1109/RADECS.2011.6131313.   DOI
19 M.R. Shaneyfelt, J.R. Schwank, S.C. Witczak, D.M. Fleetwood, R.L. Pease, P.S. Winokur, L.C. Riewe, G.L. Hash, Thermal-stress effects of enhanced low dose rate sensitivity in linear bipolar ICs, IEEE Trans. Nucl. Sci. 47 (2000) 2539-2545, https://doi.org/10.1109/23.903805.   DOI
20 W. Chen, V. Pouget, G.K. Gentry, H.J. Barnaby, B. Vermeire, B. Bakkaloglu, S. Kiaei, K.E. Holbert, P. Fouillat, Radiation hardened by design RF circuits implemented in 0.13 ㎛ CMOS technology, in: IEEE Trans. Nucl. Sci., 2006, https://doi.org/10.1109/TNS.2006.885009.   DOI
21 C.M. Ramya, M. Shanmugaraj, R. Prabakaran, Study on ZigBee technology, in: ICECT 2011 - 2011 3rd Int. Conf. Electron. Comput. Technol., 2011, https://doi.org/10.1109/ICECTECH.2011.5942102.   DOI
22 K. Kruckmeyer, J.S. Prater, B. Brown, T. Trinh, Analysis of low dose rate effects on parasitic bipolar structures in CMOS processes for mixed-signal integrated circuits, IEEE Trans. Nucl. Sci. (2011), https://doi.org/10.1109/TNS.2011.2116041.   DOI
23 D.M. Fleetwood, Total ionizing dose effects in MOS and low-dose-rate-sensitive linear-bipolar devices, IEEE Trans. Nucl. Sci. 60 (2013) 1706-1730, https://doi.org/10.1109/TNS.2013.2259260.   DOI