• 제목/요약/키워드: power line signal

검색결과 642건 처리시간 0.027초

전력시스템 동요 억제를 위한 TCSC 제어기의 파라메타 결정 (The Determination of TCSC Controller Parameters for Damping Power System Oscillations)

  • 이병하;손광명;한학근;박종근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.661-663
    • /
    • 1996
  • The thyristor controlled series compensator can vary the impedance continuously to levels below and up to the line's natural impedance, thus enabling transmission line capability to be increased and power flow to be controlled. The dynamic performance of TCSC to increase the power system damping is mainly analyzed in this paper. The TCSC controller used here is of the PID type and the input signal to the controller is the active power flow through the TCSC. The TCSC parameters are determined so as to minimize the modal performance measure for duping of power system oscillations.

  • PDF

Research of an On-Line Measurement Method for High-power IGBT Collector Current

  • Hu, Liangdeng;Sun, Chi;Zhao, Zhihua
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.362-373
    • /
    • 2016
  • The on-line measurement of high-power IGBT collector current is important for the hierarchical control and short-circuit and overcurrent protection of its driver and the sensorless control of the converter. The conventional on-line measurement methods for IGBT collector current are not suitable for engineering measurement due to their large-size, high-cost, low-efficiency sensors, current transformers or dividers, etc. Based on the gate driver, this paper has proposed a current measuring circuit for IGBT collector current. The circuit is used to conduct non-intervention on-line measurement of IGBT collector current by detecting the voltage drop of the IGBT power emitter and the auxiliary emitter terminals. A theoretical analysis verifies the feasibility of this circuit. The circuit adopts an operational amplifier for impedance isolation to prevent the measuring circuit from affecting the dynamic performance of the IGBT. Due to using the scheme for integration first and amplification afterwards, the difficult problem of achieving high accuracy in the transient-state and on-state measurement of the voltage between the terminals of IGBT power emitter and the auxiliary emitter (uEe) has been solved. This is impossible for a conventional detector. On this basis, the adoption of a two-stage operational amplifier can better meet the requirements of high bandwidth measurement under the conditions of a small signal with a large gain. Finally, various experiments have been carried out under the conditions of several typical loads (resistance-inductance load, resistance load and inductance load), different IGBT junction temperatures, soft short-circuits and hard short-circuits for the on-line measurement of IGBT collector current. This is aided by the capacitor voltage which is the integration result of the voltage uEe. The results show that the proposed method of measuring IGBT collector current is feasible and effective.

분산전원 계통 연계 전용선로에 설치된 보호 계전기의 정정에 관한 연구 (A Study on Correction of the Protective Relay Equipped in the Dedicated Line Used for Connecting Distributed Generators to Power Network)

  • 정종찬;장성일;최돈만;김광호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.141-144
    • /
    • 2002
  • This paper describes the correction of the protective relay equipped in the dedicated line used for connecting distributed generators (DG) to power grid. The fault current measured in a relaying point might be changed according to the fault conditions. Generally, the fault current of the line to line fault or the line to ground fault at the dedicated line is much higher than the protective set value due to the large fault level. However. when the high impedance fault is occurred in the dedicated line, we may not detect it because its fault level can be lower than the generating capacity of DG. And, the protective relay with conventional set value may generate a trip signal for insertion of DG due to the large transient characteristics of generators. Through the various simulations such as the fault in the dedicated line and the insertion of DG, we show that it would be necessary to modify the protective relay set value for detecting the high impedance fault occurred in the dedicated line and for preventing the mis-operation of protective relay caused by the insertion of DG.

  • PDF

스마트그리드를 위한 초고속 전력선통신기술 연구 (Study on Very High-Rate Power Line Communications for Smart Grid)

  • 최성수;오휘명;김영선;김용화
    • 전기학회논문지
    • /
    • 제60권6호
    • /
    • pp.1255-1260
    • /
    • 2011
  • In this paper, we study on the reliability of Very High-rate Power Line Communication (VH-PLC) for Smart Grid, so that the resultant data rate is over 400Mbps at a physical layer. Firstly, reviewing the research trend of the PLC, we discuss the required techniques for supporting the Smart Grid. Considering a pre-specification with the value of several parameters, we investigate a multi-carrier modulation technique to overcome limitations of higher rate transmission under power line channel environments. Then, we propose a system specification of the VH-PLC in the sense of enhancing two features. One is resolving the problem of the co-existence of the deployed high-speed PLC according to the published standardization of KS X 4600-1 in Korea. The other is getting better performance on the grid adopting the diverse element techniques, such as multi-carrier modulation, a subcarrier utilization mode, a variable rate LDPC (Low Density Parity Check) code, and a time and frequency diversity technique. Further, a simulation tool, composed of an Event-Driven simulator and a Time-Driven simulator, is developed for the purpose of verifying the system performance and continuously cross-checking the test bench signal of the proposed VH-PLC system.

전력선 통신 시스템의 구내 네트워크 데이터 처리량 연구 (Study on Network Throughput of Power Line Communication System in In-Building Network)

  • 장호덕
    • 한국정보전자통신기술학회논문지
    • /
    • 제14권1호
    • /
    • pp.43-47
    • /
    • 2021
  • 본 논문에서는 전력선 통신 (PLC: Power Line Communication) 시스템의 네트워크 데이터 처리량 (throughput)을 구내 (In-building) 환경에서 연구하였다. 전력선 채널은 주파수 선택적 페이딩 주파수 응답을 가지므로 감쇠 및 잡음의 영향을 최소화하기 위해서 adaptive bit loading 방식을 적용한 OFDM (Orthogonal Frequency Division Multiplexing) 변조 방식을 사용하였다. 구내 네트워크의 게이트웨이/CPE (Customer Premise Equipment) 전력선 통신 모뎀 사이의 전력선 통신 구간에서 처리할 수 있는 최대 데이터 처리량을 측정하기 위해 iperf 네트워크 성능 측정 툴을 이용하였고, TCP (Transmission Control Protocol) 윈도우 사이즈별 throughput을 분석하였다.

비접지 DC 급전계통에서 전류형 지락보호계전 방법 (Ground fault protective relaying schemes for DC traction power supply system)

  • 정상기;정락교;이성혁;김연수;조홍식
    • 한국철도학회논문집
    • /
    • 제7권4호
    • /
    • pp.412-417
    • /
    • 2004
  • In urban rail transit systems, ground faults in the DC traction power supply system are currently detected by the potential relay, 64P. Though it detects the fault it cannot identify the faulted region and therefore the faulted region could not be isolated properly. Therefore it could cause a power loss of the trains running on the healthy regions and the safety of the passengers in the trains could be affected adversely. Two new ground fault protective relay schemes that can identify the faulted region are presented in this paper. A current limiting device, called Device X, is newly introduced in both system, which enables large amount of ground fault current flow upon the positive line to ground fault. One type of the relaying schemes is called directional and differential ground fault protective relay which uses the current differential scheme in detecting the fault and uses the permissive signal from neighboring substation to identify the faulted region correctly. The other is called ground over current protective relay. It is similar to the ordinary over current relay but it measures the ground current at the device X not at the power feeding line, and it compares the current variation value to the ground current in Device X to identify the correct faulted line. Though both type of the relays have pros and cons and can identify the faulted region correctly, the ground over current protective relaying scheme has more advantages than the other.

상용전원을 제어하는 CO2레이저의 출력 조절에 관한 연구 (A study on the adjusting output energy of the CO2 laser controlled directly in AC power line)

  • 정종진;이임근;;박성진;;김희제
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 C
    • /
    • pp.2138-2139
    • /
    • 2005
  • We demonstrate a simple CO2 laser by controlling firing angle of a TRIAC switch in ac power line. The power supply for our laser system switches the voltage of the AC power line (60Hz) directly. The power supply does not need elements such as a rectifier bridge, energy-storage capacitors, or a current-limiting resistor in the discharge circuit. In order to control the laser output power, the pulse repetition rate is adjusted up to 60Hz and the firing angle of TRIAC gate is varied from 45 to 135. A ZCS(Zero Crossing Switch) circuit and a PIC one-chip microprocessor are used to control the gate signal of the TRIAC precisely. The maximum laser output of 40W is obtained at a total pressure of 18Torr, a pulse repetition rate of 60Hz, and a TRAIC gate firing angle of 90.

  • PDF

Transmission-Line Transformer와 Harmonic Filter를 이용한 13.56 MHz 고효율 전류 모드 D급 전력증폭기 설계 (Design of High-Efficiency Current Mode Class-D Power Amplifier Using a Transmission-Line Transformer and Harmonic Filter at 13.56 MHz)

  • 서민철;정인오;이휘섭;양영구
    • 한국전자파학회논문지
    • /
    • 제23권5호
    • /
    • pp.624-631
    • /
    • 2012
  • 본 논문은 Guanella의 1:1 transmission-line transformer와 harmonic filtering 방식을 이용한 13.56 MHz 고효율 전류 모드 D급(CMCD) 전력증폭기를 제안한다. 출력 정합 네트워크에 기존의 D급 전력증폭기의 부하 네트워크를 변형하여 harmonic filtering 방식을 포함시킴으로써 낮은 2차와 3차 고조파 특성을 얻었다. 제작된 CMCD 전력증폭기는 13.56 MHz의 CW 입력 신호를 사용하여 측정하였을 때, 13.4 dB의 전력 이득을 가지며, 44.4 dBm의 출력에서 84.6 %의 높은 PAE 특성을 나타내었다. 같은 출력에서 2차 3차 고조파는 각각 -50.3 dBc와 -46.4 dBc를 나타냈다.

PMU 데이터를 이용한 저주파 진동분석 연구 (A Study on the Low Frequency Oscillation Using PMU Measurement Data)

  • 김용학;남수철;고백경;강성범;심관식
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권3호
    • /
    • pp.245-252
    • /
    • 2020
  • It is very important to evaluate on/off-line stability to operate the power system stably and economically. Until now, we have continuously secured the operation reliability of the power system through the evaluation of transient, voltage and small signal stability. This paper proposes that it is possible to operate in KWAMS by applying the multi-section analysis and subspace methods and verifying the reliability of the algorithms to directly estimate the dominant oscillation mode of the power system from the signal waveform acquired from the phasor measurement units. In addition, this paper shows that the dominant oscillation mode can be detected from real-time measurement data in power systems. Therefore, if we can monitor the state of the power system in real time, it is possible to avoid a large-scale power outage by knowing the possibility of the power system accident in advance.

무손실 스너버를 적용한 고역률, 고효률 AC/DC Boost 컨버터에 관한 연구 (A Study on the High-Power-Factor, High-Efficiency AC/DC Boost Converter with Non-Dissipative Snubber)

  • 배진용;김용;백수현;권순도
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.112-115
    • /
    • 2002
  • Previous AC/DC PFC Boost Converter perceives feed forward signal of input and feedback signal of output for average current-mode control. Previous Boost Converter, the quantity of input current will be decreased by the decrease of output current in light load, and also power factor comes to be decreased. Also the efficiency of converter will be decreased by the decrease of power factor. The proposed converter presents the good PFC(Power Factor Correction), low line current hormonic distortions and tight output voltage regulations using non-dissipative snubber. The proposed converter also has a high efficiency by non-dissipative snubber circuit. To show the superiority of this converter is verified through the experiment with a 640W, 100kHz prototype converter.

  • PDF