• Title/Summary/Keyword: power law equation

Search Result 198, Processing Time 0.028 seconds

The impacts of thermophoresis via Cattaneo-Christov heat flux model

  • Ahmad, Manzoor;Hussain, Muzamal;Khadimallah, Mohamed A.;Ayed, Hamdi;Taj, Muhammad;Alshoaibi, Adil
    • Computers and Concrete
    • /
    • v.29 no.4
    • /
    • pp.255-262
    • /
    • 2022
  • The present study investigates the effects of Cattaneo-Christov thermal effects of stagnation point in Walters-B nanofluid flow through lubrication of power-law fluid by taking the slip at the interfacial condition. The impacts of thermophoresis and Brownian motions are further accounted. The fluid impinging orthogonally on the surface is due to power-law slim coating liquid. The generalized newtonian fluid equation is used that obeys the power law constitutive equation to model our problem. The effect of velocity profiles, temperature for different values of n are investigated. The prandtl on the temperature distribution for partial slip and no slip cases is also observed. It is found that for larger values of prandtl number thermal diffusivity of fluid reduces and it enhance the decrease in temperature and boundary layer thickness.

Buckling of axially graded columns with varying power-law gradients

  • Li, X.F.;Lu, L.;Hu, Z.L.;Huang, Y.;Xiao, B.J.
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.547-554
    • /
    • 2022
  • This paper studies the static stability of an axially graded column with the power-law gradient varying along the axial direction. For a nonhomogeneous column with one end linked to a rotational spring and loaded by a compressive force, respectively, an Euler problem is analyzed by solving a boundary value problem of an ordinary differential equation with varying coefficients. Buckling loads through the characteristic equation with the aid of the Bessel functions are exactly given. An alternative way to approximately determine buckling loads through the integral equation method is also presented. By comparing approximate buckling loads with the exact ones, the approximate solution is simple in form and enough accurate for varying power-law gradients. The influences of the gradient index and the rotational spring stiffness on the critical forces are elucidated. The critical force and mode shapes at buckling are presented in graph. The critical force given here may be used as a benchmark to check the accuracy and effectiveness of numerical solutions. The approximate solution provides a feasible approach to calculating the buckling loads and to assessing the loss of stability of columns in engineering.

Flow and Displacement of Non-Newtonian Fluid(Power-Law Model) by Surface Tension and Gravity Force in Inclined Circular Tube (경사진 원형관에서 표면장력과 중력에 의한 비뉴턴 유체(멱법칙 모델)의 유동 및 변위)

  • Moh, Jeong Hah;Cho, Y.I.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.9-16
    • /
    • 2014
  • This paper presents the theoretical analysis of a flow driven by surface tension and gravity in an inclined circular tube. A governing equation is developed for describing the displacement of a non-Newtonian fluid(Power-law model) that continuously flows into a circular tube owing to surface tension, which represents a second-order, nonlinear, non-homogeneous, and ordinary differential form. It was found that quantitatively, the theoretical predictions of the governing equation were in excellent agreement with the solutions of the equation for horizontal tubes and the past experimental data. In addition, the predictions compared very well with the results of the force balance equation for steady.

Analysis of Physical Combat Power for Unmanned Combat Aerial Vehicle (무인전투기 물리적 전투력 분석)

  • Min, Seungsik;Oh, Kyungwon
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.6
    • /
    • pp.50-55
    • /
    • 2017
  • The objective of this study was to use the Lanchester equation to predict the outcome of our engagement between our unmanned aerial vehicle (UAV) (Blue Group) and enemy UAV (Red Group). Lanchester's law states that the power of corps is proportional to the number of combatants. A second law states that the power of corps is proportional to the square of the number of combatants. The first law is a suitable law for guerrilla warfare while the second law is known as the law suitable for all-out war. Therefore, the second law is commonly used. The second law of Lanchester's was used in this study to predict engagement results. We estimated the battle loss rate value to win the battle as well as the required power number. We also predicted power number to make the damage of our group less than one. The battle loss rate to reliably receive victory when the enemy's UAV and the ally's UAV are equal in number of combat units must be 1: 1.5 or more.

A Study on Heat Transfer Enhancement for a Shear-Thinning Fluid in Triangular Ducts (삼각형 단면 덕트 내의 Shear-Thinning 유체에 대한 열전달 촉진에 관한 연구)

  • Lee, Dong-Ryul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.3808-3814
    • /
    • 2011
  • The prediction of heat transfer and pressure drops in the exchanger passages is a clue to the problem of heat exchanger design. In order to make such predictions for non-Newtonian fluids, it is necessary to know the relation between the viscous properties of the fluid and the wall shear rate in the duct. This study deals with the limits of validity of the power law equation. The useful methodology of the present research involves a consideration of a more general equation which has power law and Newtonian behavior as asymptotes. It isconcluded that use of the power law equation outside of its applicability range can lead to serious errors inpredicting the heat transfer and pressure drops. The present computational results of the friction factors times Reynolds number for shear-thinning fluid flows in a triangular duct are compared with previous published results, showing agreement with 0.13 % in Newtonian region and 2.85 % in power law region. These shear-thinning fluid results also showed the 12% increase of convective heat transfer enhancement compared with Newtonian heat transfer.

Constitutive Models for Final Stage Densification of Powder Compacts with Power-Law Creep Deformation (Power-law 크리프 변형을 따르는 분말 성형체의 말기 치밀화 모델)

  • Yang, Hoon-Chul;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.930-939
    • /
    • 2004
  • Constitutive models for final stage densification of metal powder compacts with power-law creep deformation were investigated. The constitutive models were implemented into a finite element program (ABAQUS) by using user subroutine CREEP and, from FEM results, useful densification curves were obtained when hydrostatic and uniaxial stress were applied to the powder compacts at various pressures and temperatures. Because the densification behavior varied as the constitutive models, the equivalent stress surface on each constitutive equation was investigated to analyze the difference of densification behavior.

Flow Analysis of the Modified Power-Law Non-Newtonian Fluids in the Stenotic Tubes (수정멱법칙 비뉴턴유체의 협착관내 유동장해석)

  • Sub, S.H.;Yoo, S.S.;Chang, N.I.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.227-236
    • /
    • 1994
  • Steady flows of Newtonian and non-Newtonian fluids in the stenotic tubes with various stenotic shapes are numerically simulated. Validity of the modified power-law model as a constitutive equation for the purely viscous non-Newtonian fluid is discussed and the results of the power-law model are compared with those of the Carreau model, the Powell-Eyring model and experimental data for blood. Flow characteristics and reattachment lengths for non-Newtonian fluids in the stenotic tubes are presented extensively. Also, the analysis is extended to predict the influences of diameter ratio, stenosis spacing, number of stenosis and Reynolds number on the flow characteristics in the multiple stenotic tubes.

  • PDF

Effect of power law index for vibration of armchair and zigzag single walled carbon nanotubes

  • Khadimallah, Mohamed Amine;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • v.37 no.5
    • /
    • pp.621-632
    • /
    • 2020
  • This research deals with the study of vibrational behavior of armchair and zigzag single-walled carbon nanotubes invoking extended Love shell theory. The effects of different physical and material parameters on the fundamental frequencies are investigated. By using volume fraction for power law index, the fundamental natural frequency spectra for two forms of single-walled carbon nanotubes are calculated. The influence of frequencies against length-to-diameter ratios with varying power law index are investigated in detail for these tubes. To discretize the governing equation in eigen-value form, wave propagation approach is developed. Complex exponential functions have been used and the axial model depends on boundary condition that has been described at the edges of carbon nanotubes to calculate the axial modal dependence. Computer software MATLAB is utilized for the frequencies of single-walled carbon nanotubes and current results shows a good stability with comparison of other studies.

Ionic Conductivity in Lithium-Borate-Tantalate Compound Glasses

  • Kwon, Oh Hyeok;Yang, Yong Suk;Rim, Young Hoon
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1873-1878
    • /
    • 2018
  • We have investigated the ionic conductivity and dielectric relaxation in $Li_2B_4O_7$ (LBO) and $Li_2O-B_2O_3-Ta_2O_5$ (LBTO) glasses. The sample was synthesized by using the melt quenching method. The frequency dependence of the electrical data from the LBO and LBTO glasses has been analyzed in the frameworks of the impedance Cole-Cole formalism and the universal power-law representation driven by the modified fractional Rayleigh equation. The potential barriers in the LBO and the LBTO glasses turn out to be the same. Comparing with the dc and ac activation energies of the LBO glass, these energies of the LBTO glass decrease due to the increasing Coulomb interaction of inter-cationic interaction.

Application of Kelvin's approach for material structure of CNT: Polynomial volume fraction law

  • Hussain, Muzamal
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.129-139
    • /
    • 2020
  • In this piece of work, carbon nanotubes motion equations are framed by Kelvin's method. Employment of the Kelvin's method procedure gives birth to the tube frequency equation. It is also exhibited that the effect of frequencies is investigated by varying the different index of polynomial function. By using volume fraction for power law index, the fundamental natural frequency spectra for two forms of single-walled carbon nanotubes are calculated. The influence of frequencies against length-to-diameter ratios with varying power law index are investigated in detail for these tubes. Throughout the computation, it is observed that the frequency behavior for the boundary conditions follow as; clamped-clamped, simply supported-simply supported and these frequency curves are higher than that of clamped-free curves. Computer software MATLAB is utilized for the frequencies of single-walled carbon nanotubes.