Browse > Article
http://dx.doi.org/10.3938/jkps.73.1873

Ionic Conductivity in Lithium-Borate-Tantalate Compound Glasses  

Kwon, Oh Hyeok (Department of Nano Fusion Technology, Pusan National University)
Yang, Yong Suk (Department of Nano Fusion Technology, Pusan National University)
Rim, Young Hoon (College of Liberal Arts, Semyung University)
Abstract
We have investigated the ionic conductivity and dielectric relaxation in $Li_2B_4O_7$ (LBO) and $Li_2O-B_2O_3-Ta_2O_5$ (LBTO) glasses. The sample was synthesized by using the melt quenching method. The frequency dependence of the electrical data from the LBO and LBTO glasses has been analyzed in the frameworks of the impedance Cole-Cole formalism and the universal power-law representation driven by the modified fractional Rayleigh equation. The potential barriers in the LBO and the LBTO glasses turn out to be the same. Comparing with the dc and ac activation energies of the LBO glass, these energies of the LBTO glass decrease due to the increasing Coulomb interaction of inter-cationic interaction.
Keywords
Glass; Conductivity; Activation energy; Cole-Cole plot; Power law; Modified Rayleigh equation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. K. Jonscher, Universal Relaxation Law (Chelsea Dielectric Press, London, 1996).
2 J. C. Dyre and T. B. Schroder, Rev. Mod. Phys. 72, 873 (2000).   DOI
3 Y. H. Rim, M. Kim, J. E. Kim and Y. S. Yang, New J. Phys. 15, 023005 (2013).   DOI
4 C. T. Moynihan, L. P. Boesch and N. L. Laberge, Phys. Chem. Glasses 14, 122 (1973).
5 Y. H. Rim, B. S. Lee, H. W. Choi, J. H. Cho and Y. S. Yang, J. Phys. Chem. B 110, 8094 (2006).   DOI
6 J. R. Macdonald, Impedance Spectroscopy, second ed. (John Wiley & Sons Inc., New Jersey, 2005).
7 J. C. Dyre, P. Maass, B. Roling and D. L. Sidebottom, Rep. Prog. Phys. 72, 046501 (2009).   DOI
8 A. K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics Press, London, 1983).
9 R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000).   DOI
10 P. Maass, A. Bunde and M. D. Ingram, Phys. Rev. Lett. 68, 3064 (1992).   DOI
11 D. L. Sidebottom, Phys. Rev. B 61, 14507 (2000).   DOI
12 R. Komatsu, T. Sugawara and K. Sassa, Appl. Phys. Lett. 70, 3492 (1997).   DOI
13 T. Sato and H. Abe, IEEE Trans. Ultrason. Ferroelectrics Frequency Control 45, 1506 (1998).   DOI
14 J. H. Cho, N. J. Bang, S. H. Kim and Y. S. Yang, J. Korean Phys. Soc. 29, S555 (1996).
15 V. Y. Shur, A. R. Akhmatkhanov, D. S. Chezganov, A. I. Lobov, I. S. Baturin and M. M. Smirnov, Appl. Phys. Lett. 103, 242903 (2013).   DOI
16 A. E. Aliev, I. N. Kholmanov and P. K. Khabibullaev, Solid State Ionics 118, 111 (1999).   DOI
17 J. Liu, M. N. Banis, X. Li, A. Lushington, M. Cai, R. Li, T-K Sham and X. Sun J. Phys. Chem. C 117, 20260 (2013).