• 제목/요약/키워드: power integrity characteristics

검색결과 104건 처리시간 0.024초

증기터빈 저압 L-1단 블레이드-디스크 연성 진동 특성 분석 (Vibration Analysis for the L-1 Stage Bladed-disk of a LP Steam Turbine)

  • 이두영;배용채;김희수;이욱륜;김두영
    • 한국소음진동공학회논문집
    • /
    • 제20권1호
    • /
    • pp.29-35
    • /
    • 2010
  • This paper studies causes of the L-1 blade damage of a low pressure turbine, which was found during the scheduled maintenance, in 500 MW fossil power plants. Many failures of turbine blades are caused by the coupling of aerodynamic forcing with bladed-disk vibration characteristics. In this study the coupled vibration characteristics of the L-1 turbine bladed-disk in a fossil power plant is shown for the purpose of identifying the root cause of the damage and confirming equipment integrity. First, analytic and experimental modal analysis for the bladed-disk at zero rpm as well as a single blade were performed and analyzed in order to verify the finite element model, and then steady stresses, natural frequencies and corresponding mode shapes, dynamic stresses were calculated for the bladed-disk under operation. Centrifugal force and steady steam force were considered in calculation of steady and dynamic stress. The proximity of modes to sources of excitation was assessed by means of an interference diagram to examine resonances. In addition, fatigue analysis was done for the dangerous modes of operation by a local strain approach. It is expected that these dynamic characteristics will be used effectively to identify the root causes of blade failures and to perform prompt maintenance.

Effects of Electrostatic Discharge Stress on Current-Voltage and Reverse Recovery Time of Fast Power Diode

  • Bouangeune, Daoheung;Choi, Sang-Sik;Cho, Deok-Ho;Shim, Kyu-Hwan;Chang, Sung-Yong;Leem, See-Jong;Choi, Chel-Jong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권4호
    • /
    • pp.495-502
    • /
    • 2014
  • Fast recovery diodes (FRDs) were developed using the $p^{{+}{+}}/n^-/n^{{+}{+}}$ epitaxial layers grown by low temperature epitaxy technology. We investigated the effect of electrostatic discharge (ESD) stresses on their electrical and switching properties using current-voltage (I-V) and reverse recovery time analyses. The FRDs presented a high breakdown voltage, >450 V, and a low reverse leakage current, < $10^{-9}$ A. From the temperature dependence of thermal activation energy, the reverse leakage current was dominated by thermal generation-recombination and diffusion, respectively, at low and high temperature regions. By virtue of the abrupt junction and the Pt drive-in for the controlling of carrier lifetime, the soft reverse recovery behavior could be obtained along with a well-controlled reverse recovery time of 21.12 ns. The FRDs exhibited excellent ESD robustness with negligible degradations in the I-V and the reverse recovery characteristics up to ${\pm}5.5$ kV of HBM and ${\pm}3.5$ kV of IEC61000-4-2 shocks. Likewise, transmission line pulse (TLP) analysis reveals that the FRDs can handle the maximum peak pulse current, $I_{pp,max}$, up to 30 A in the forward mode and down to - 24 A in the reverse mode. The robust ESD property can improve the long term reliability of various power applications such as automobile and switching mode power supply.

자연순환 루프에서 이상유동 특성에 관한 예비실험 연구 (Preliminary Experimental Study on the Two-phase Flow Characteristics in a Natural Circulation Loop)

  • 김재철;하광순;박래준;홍성완;김상백
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.308-311
    • /
    • 2008
  • As a severe accident mitigation strategy in a nuclear power plant, ERVC(External Reactor Vessel Cooling) has been proposed. Under ERVC conditions, where a molten corium is relocated in a reactor vessel lower head, a natural circulation two-phase flow is driven in the annular gap between the reactor vessel wall and its insulation. This flow should be sufficient to remove the decay heat of the molten corium and maintain the integrity of the reactor vessel. Preliminary experimental study was performed to estimate the natural circulation two-phase flow. The experimental facility which is one dimensional, the half height, and the 1/238 channel area of APR1400, was prepared and the experiments were carried out to estimate the natural circulation two-phase flow with varying the parameters of the coolant inlet area, the heat rate, and the coolant inlet subcooling. In results, the periodic circulation flow was observed and the characteristics were varied from the experimental parameters. The frequency of the natural circulation flow rate increased as the wall heat flux increased.

  • PDF

내압과 굽힘의 복합하중에서 내부 감육배관의 손상기준 (Criterion for Failure of Internally Wall Thinned Pipe Under a Combined Pressure and Bending Moment)

  • 김진원;박치용
    • 한국안전학회지
    • /
    • 제17권4호
    • /
    • pp.52-60
    • /
    • 2002
  • Failure criterion is a parameter to represent the resistance to failure of locally wall thinned pipe, and it depends on material characteristics, defect geometry, applied loading type, and failure mode. Therefore, accurate prediction of integrity of wall thinned pipe requires a failure criterion adequately reflected the characteristics of defect shape and loading in the piping system. In the present study, the finite element analysis was performed and the results were compared with those of pipe experiment to develop a sound criterion for failure of internally wall thinned pipe subjected to combined pressure and bending loads. By comparing the predictions of failure to actual failure load and displacement, an appropriate criterion was investigated. From this investigation, it is concluded that true ultimate stress criterion is the most accurate to predict failure of wall thinned pipe under combined loads, but it is not conservative under some conditions. Engineering ultimate stress estimates the failure load and displacement reasonably for al conditions, although the predictions are less accurate compared with the results predicted by true ultimate stress criterion.

LPG 폭발로 인한 건설현장 굴착웅덩이의 구조물 파손 특성에 관한 연구 (A Study on the Failure Characteristic of Excavation Puddle by LPG Explosion using AUTODYN)

  • 김의수
    • 한국가스학회지
    • /
    • 제26권5호
    • /
    • pp.58-65
    • /
    • 2022
  • Gas explosion accidents could cause a catastrophe. we need specialized and systematic accident investigation techniques to shed light on the cause and prevent similar accidents. In this study, we had performed LPG explosion simulation using AUTODYN which is the commercial explosion program and predicted the damage characteristics of the structures by LNG explosive power. In the first step, we could get LPG's physical and chemical explosion properties by calculation using TNT equivalency method. And then, by applying TNT equivalency value about the explosion limit concentration of LPG on the 2D-AUTODYN simulation, we could get the explosion pressure wave profiles (explosion pressure, explosion velocity, etc.). In the last step, we performed LPG explosion simulation by applying to the explosion pressure wave profiles as the input data on the 3D-AUTODYN simulation. As a result, we had performed analyzing of the explosion characteristics of LPG in accordance with concentration through the 3D-AUTODYN simulation in terms of the explosion pressure behavior and structure destruction and damage behavior. The analyses showed that the generated stresses of the structures were lower than the compressive strengths in cases 1(two lane) and 2(four lane), while the generated stress in case 3(six lane) was 8.68e3 kPa, which exceeded the compressive strength of 5.89e3 kPa.

Preliminary data analysis of surrogate fuel-loaded road transportation tests under normal conditions of transport

  • JaeHoon Lim;Woo-seok Choi
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4030-4048
    • /
    • 2022
  • In this study, road transportation tests were conducted with surrogate fuel assemblies under normal conditions of transport to evaluate the vibration and shock load characteristics of spent nuclear fuel (SNF). The overall test data analysis was conducted based on the measured acceleration and strain data obtained from the speed bump, lane-change, deceleration, obstacle avoidance, and circular tests. Furthermore, representative shock response spectrums and power spectral densities of each test mode were acquired. Amplification or attenuation characteristics were investigated according to the load transfer path. The load attenuated significantly as it transferred from the trailer to the cask. By contrast, the load amplified as it transferred from the cask to the surrogate SNF assembly. The fuel loading location on the cask disk assembly did not exhibit a significant influence on the strain measured from the fuel rods. The principal strain was in the vertical direction, and relatively large strain values were obtained in spans with large spacing between spacer grids. The influence of the lateral location of fuel rods was also investigated. The fuel rods located at the side exhibited relatively large strain values than those located at the center. Based on the strain data obtained from the test results, a hypothetical road transportation scenario was established. A fatigue evaluation of the SNF rod was performed based on this scenario. The evaluation results indicate that no fatigue damage occurred on the fuel rods.

원전 2차 계통에서 아민의 pH 제어 특성 연구 (A Study on Characteristics of pH Control with Amines in the Secondary Side of Nuclear Power Plants)

  • 이인형;안현경;박병기;권혁준;송찬호
    • 한국산학기술학회논문지
    • /
    • 제11권8호
    • /
    • pp.3112-3118
    • /
    • 2010
  • 최근 경수로형 원전 2차 계통의 건전성 유지를 위해 수처리제를 암모니아에서 에탄올아민으로 전환하였으나, 적용 후 복수 및 저압급수가열기 영역에서의 pH가 감소하므로 본 연구에서는 최적의 pH 제어제로 사용 할 수 있는 아민을 조사하였다. 대체아민 조사 결과 최적 조건을 만족시키는 단일 아민은 존재하지 않았다. 암모니아는 상대휘발도가 높아 증기에 많이 분포되어 증기 응축수인 복수에서 pH가 높으며, 상대휘발도가 낮은 에탄올아민은 습증기 영역의 pH를 높여 유체가속부식을 억제하므로 증기발생기 철 슬러지 유입을 감소하는데 효과적인 것으로 나타났다. 따라서 복수 및 저압급수계통에서 pH가 높은 암모니아와 습증기영역의 유체가속부식 측면에서 특성이 우수한 에탄올아민(ETA)을 혼합 주입하는 복합아민을 선택하면 2차 계통 재질의 손실을 최소화하여 증기발생기 건전성을 확보할 수 있을 것이다.

박용엔진 피스톤 스커트 프로파일 변경에 의한 마찰손실(FMEP) 저감 연구 (Friction Power Loss Reduction for a Marine Diesel Engine Piston)

  • 안성찬;이상돈;손정호;조용주
    • Tribology and Lubricants
    • /
    • 제32권4호
    • /
    • pp.132-139
    • /
    • 2016
  • The piston of a marine diesel engine works under severe conditions, including a combustion pressure of over 180 bar, high thermal load, and high speed. Therefore, the analyses of the fatigue strength, thermal load, clamping (bolting) system and lubrication performance are important in achieving a robust piston design. Designing the surface profile and the skirt ovality carefully is important to prevent severe wear and reduce frictional loss for engine efficiency. This study performs flexible multi-body dynamic and elasto-hydrodynamic (EHD) analyses using AVL/EXCITE/PU are performed to evaluate tribological characteristics. The numerical techniques employed to perform the EHD analysis are as follows: (1) averaged Reynolds equation considering the surface roughness; (2) Greenwood_Tripp model considering the solid_to_solid contact using the statistical values of the summit roughness; and (3) flow factor considering the surface topology. This study also compares two cases of skirt shapes with minimum oil film thickness, peak oil film pressure, asperity contact pressure, wear rate using the Archard model and friction power loss (i.e., frictional loss mean effective pressure (FMEP)). Accordingly, the study compares the calculated wear pattern with the field test result of the piston operating for 12,000h to verify the quantitative integrity of the numerical analysis. The results show that the selected profile and the piston skirt ovality reduce friction power loss and peak oil film pressure by 7% and 57%, respectively. They also increase the minimum oil film thickness by 34%.

주기적 충격하중을 받는 강 구조물의 구조건전성 평가 (Evaluation Using Dynamic Characteristic of Steel Structures under Periodical Impact Loads)

  • 김강석;나환선;이현주;이강민;유경석
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권1호
    • /
    • pp.120-128
    • /
    • 2011
  • 변전소 구조물은 가스절연개폐기의 개폐로 유발되는 주기적인 충격하중을 받게 된다. 이러한 주기적인 충격하중은 구조물의 노후화 및 열화를 가속화하여 구조물의 일부 부재 혹은 전반적인 강성 감소를 초래할 수 있다. 본 연구에서는 이러한 주기적인 충격하중이 구조물에 미치는 영향을 정량적으로 평가하고, 손상 정도를 평가하는 방법을 선정하고자 한다. 따라서, 개략적인 손상 정도를 파악할 수 있는 효율적인 방법으로 인지되고 있는 시스템식별기법을 선정하였다. 선정된 기법에 대한 신뢰성을 검증하기 위해 3층 1경간 축소 모형을 대상으로 모의 손상실험 및 해석을 통해 모드형상 및 고유진동수를 산정하고 결과를 비교하였다.

Experimental research on the mechanisms of condensation induced water hammer in a natural circulation system

  • Sun, Jianchuang;Deng, Jian;Ran, Xu;Cao, Xiaxin;Fan, Guangming;Ding, Ming
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3635-3642
    • /
    • 2021
  • Natural circulation systems (NCSs) are extensively applied in nuclear power plants because of their simplicity and inherent safety features. For some passive natural circulation systems in floating nuclear power plants (FNPPs), the ocean is commonly used as the heat sink. Condensation induced water hammer (CIWH) events may appear as the steam directly contacts the subcooled seawater, which seriously threatens the safe operation and integrity of the NCSs. Nevertheless, the research on the formation mechanisms of CIWH is insufficient, especially in NCSs. In this paper, the characteristics of flow rate and fluid temperature are emphatically analyzed. Then the formation types of CIWH are identified by visualization method. The experimental results reveal that due to the different size and formation periods of steam slugs, the flow rate presents continuous and irregular oscillation. The fluid in the horizontal hot pipe section near the water tank is always subcooled due to the reverse flow phenomenon. Moreover, the transition from stratified flow to slug flow can cause CIWH and enhance flow instability. Three types of formation mechanisms of CIWH, including the Kelvin-Helmholtz instability, the interaction of solitary wave and interface wave, and the pressure wave induced by CIWH, are obtained by identifying 67 CIWH events.