• Title/Summary/Keyword: power inductor

Search Result 999, Processing Time 0.023 seconds

An Integrated LTCC Inductor and Its Application (LTCC 기술을 이용한 마이크로 인덕터의 개발과 응용)

  • Kim, Chan-Young;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.129-132
    • /
    • 2004
  • An integrated inductor using low temperature cofiring ceramics(LTCC) technology has been fabricated. The inductor has Ag circular spiral coil with 16 turns (2-turn $\times$ 8-layer) and has a dimension of 11.52mm diameter and 0.71mm thick, For the fabricated inductor, calculation method of inductance was given and it is confirmed that the calculated value is very close to the measured value. Finally as an application of the LTCC integrated inductor to low power electronic circuits, a LTCC buck DC/DC converter with 1W output power and 1MHz switching frequency using the inductor has been developed. For the converter the maximum efficiency of about 81% was obtained.

  • PDF

Embedded Switched-Inductor Z-Source Inverters

  • Nguyen, Minh-Khai;Lim, Young-Cheol;Chang, Young-Hak;Moon, Chae-Joo
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.9-19
    • /
    • 2013
  • In this paper, a ripple input current embedded switched-inductor Z-source inverter (rESL-ZSI) and a continuous input current embedded switched-inductor Z-source inverter (cESL-ZSI) are proposed by inserting two dc sources into the switched-inductor cells. The proposed inverters provide a high boost voltage inversion ability, a lower voltage stress across the active switching devices, a continuous input current and a reduced voltage stress on the capacitors. In addition, they can suppress the startup inrush current, which otherwise might destroy the devices. This paper presents the operating principles, analysis, and simulation results, and compares them to the conventional switched-inductor Z-source inverter. In order to verify the performance of the proposed converters, a laboratory prototype was constructed with 60 $V_{dc}$ input to test both configurations.

A KY Converter Integrated with a SR Boost Converter and a Coupled Inductor

  • Hwu, Kuo-Ing;Jiang, Wen-Zhuang
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.621-631
    • /
    • 2017
  • A KY converter integrated with a conventional synchronously rectified (SR) boost converter and a coupled inductor is presented in this paper. This improved KY converter has the following advantages: 1) the two converters use common switches; 2) the voltage gain of the KY converter can be improved due to the integration of a boost converter and a coupled inductor; 3) the leakage inductance of the coupled inductor is utilized to achieve zero voltage switching (ZVS); 4) the current stress on the charge pump capacitors and the decreasing rate of the diode current can be limited due to the use of the coupled inductor; and 5) the output current is non-pulsating. Moreover, the active switches are driven by using one half-bridge gate driver. Thus, no isolated driver is needed. Finally, the operating principle and analysis of the proposed converter are given to verify the effectiveness of the proposed converter.

A DC-DC Converter Using LTCC NiZnAg (LTCC NiZnAg 이용한 DC-DC 컨버터)

  • Kim, Young-Jin;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1435-1437
    • /
    • 2005
  • An integrated inductor using the low temperature cofiring ceramics(LTCC) NiZnAg was fabricated. The inductor has a sandwitch structure, which consists of 18 turns-and-thin Ag rectangular spiral coils in 2-layers(10-turn & 8-turn in each layer). The two layers of Ag coils are among three thick Ni-Zn ferrite so the inductor has a dimension of 12.70mm$\times$12.70mm and 0.32mm thick. For the fabricated inductor, calculation method of inductance was given and it is confirmed that the calculated value is very close to the measured one. Finally as an application of the LTCC integrated inductor for low power electronic circuits, a LTCC boost DC/DC converter with 1W output power and 500KHz switching frequency using the inductor fabricated was developed. For the converter the maximum efficiency of about 87% was obtained.

  • PDF

Differential 2.4-GHz CMOS Power Amplifier Using an Asymmetric Differential Inductor to Improve Linearity (비대칭 차동 인덕터를 이용한 2.4-GHz 선형 CMOS 전력 증폭기)

  • Jang, Seongjin;Lee, Changhyun;Park, Changkun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.6
    • /
    • pp.726-732
    • /
    • 2019
  • In this study, we proposed an asymmetric differential inductor to improve the linearity of differential power amplifiers. Considering the phase error between differential signals of the differential amplifier, the location of the center tap of the differential inductor was modified to minimize the error. As a result, the center tap was positioned asymmetrically inside the differential inductor. With the asymmetric differential inductor, the AM-to-AM and AM-to-PM distortions of the amplifier were suppressed. To confirm the feasibility of the inductor, we designed a 2.4 GHz differential CMOS PA for IEEE 802.11n WLAN applications with a 64-quadrature amplitude modulation (QAM), 9.6 dB peak-to-average power ratio (PAPR), and a bandwidth of 20 MHz. The designed power amplifier was fabricated using the 180-nm RF CMOS process. The measured maximum linear output power was 17 dBm, whereas EVM was 5%.

A Novel Predictive Digital Controlled Sensorless PFC Converter under the Boundary Conduction Mode

  • Wang, Jizhe;Maruta, Hidenori;Matsunaga, Motoshi;Kurokawa, Fujio
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • This paper presents a novel predictive digital control method for boundary conduction mode PFC converters without the need for detecting the inductor current. In the proposed method, the inductor current is predicted by analytical equations instead of being detected by a sensing-resistor. The predicted zero-crossing point of the inductor current is determined by the values of the input voltage, output voltage and predicted inductor current. Importantly, the prediction of zero-crossing point is achieved in just a single switching cycle. Therefore, the errors in predictive calculation caused by parameter variations can be compensated. The prediction of the zero-crossing point with the proposed method has been shown to have good accuracy. The proposed method also shows high stability towards variations in both the inductance and output power. Experimental results demonstrate the effectiveness of the proposed predictive digital control method for PFC converters.

Analysis of the Charge Controlled Inductor Current Sensing Peak-Power-Tracking Solar Array Regulator

  • Lee, K.S.;Cho, Y.J.;Cho, B.H.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.982-986
    • /
    • 1998
  • The peak-power-tracking solar array regulator sensing the inductor current is proposed. Since it uses the inductor current as the solar array output power information, the PPT control scheme can be greatly simplified. The charge controlled two-loop scheme is presented to improve the dynamics due to the inductor current sensing. The comparison between the single-voltage loop controlled system and the two-loop controlled system employing the charge control is presented. This paper also contains the simulation results of that comparison.

  • PDF

Experimental and Numerical Analysis of a Simple Core Loss Calculation for AC Filter Inductor in PWM DC-AC Inverters

  • Lee, Kyoung-Jun;Cha, Honnyong;Lee, Jong-Pil;Yoo, Dong-Wook;Kim, Hee-Je
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.113-121
    • /
    • 2013
  • This paper introduces a simple core loss calculation method for output filter inductor in pulse width modulation (PWM) DC-AC inverter. Amorphous C-core (AMCC-320) is used to analyze the core loss. In order to measure core loss of the output filter inductor and validate the proposed method, a single-phase half-bridge inverter and a calorimeter are used. By changing switching frequency and modulation index (MI) of the inverter, core loss of the AMCC-320 is measured with the lab-made calorimeter and the results are compared with calculated core loss. The proposed method can be easily extended to other core loss calculation of various converters.

Multi-Mode Single Inductor Converter for DC Grid System with a Battery (DC 배전을 위한 다중 모드 단일 인덕터 컨버터)

  • Kim, Ji-Yeon;Kim, Jae-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.5
    • /
    • pp.343-349
    • /
    • 2020
  • This study proposes a new single inductor converter for DC grid systems. A conventional system is composed of two independent converters for controlling battery and load. This system is simple but it has two inductors that affect power density and efficiency. The proposed converter can reduce the number of inductors by integrating the two converters and relieve voltage stress on switches by using a battery switching cell. Accordingly, power density and efficiency can be improved using a single inductor and lower voltage-rated switches. A prototype of a 500 W converter is built, and each mode is experimented on to confirm the validity of the proposed converter.

A Single Inductor Dual Output Synchronous High Speed DC-DC Boost Converter using Type-III Compensation for Low Power Applications

  • Hayder, Abbas Syed;Park, Hyun-Gu;Kim, Hongin;Lee, Dong-Soo;Abbasizadeh, Hamed;Lee, Kang-Yoon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.1
    • /
    • pp.44-50
    • /
    • 2015
  • This paper presents a high speed synchronous single inductor dual output boost converter using Type-III compensation for power management in smart devices. Maintaining multiple outputs from a single inductor is becoming very important because of inductor the sizes. The uses of high switching frequency, inductor and capacitor sizes are reduced. Owing to synchronous rectification this kind of converter is suitable for SoC. The phase is controlled in time sharing manner for each output. The controller used here is Type-III, which ensures quick settling time and high stability. The outputs are stable within $58{\mu}s$. The simulation results show that the proposed scheme achieves a better overall performance. The input voltage is 1.8V, switching frequency is 5MHz, and the inductor used is 600nH. The output voltages and powers are 2.6V& 3.3V and 147mW &, 230mW respectively.