• Title/Summary/Keyword: power increased design

Search Result 955, Processing Time 0.029 seconds

A Study of Optimum Insulation Conditions of a HTS Power Cable Cryostat (고온초전도 전력케이블 저온용기의 최적단열설계에 관한 연구)

  • Koh, Deuk-Yong;Lee, Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.4
    • /
    • pp.333-338
    • /
    • 2007
  • The object of this study is to find the optimal insulation design conditions of a HTS power cable cryostat. The optimum condition of a cable cryostat is obtained by varying types of MLIs, cable core weights, spacer diameters, winding pitches and MLI layer numbers. As the weight of cable core is increased, conduction heat transfer from surroundings to cable cryostat is increased. But as the spacer pitch is increased from 120 mm to 200 mm, the heat leak of cable cryostat remains almost constant. The optimal number of MLI layers is suggested. Double ply MLI is more effective than triple ply MLI and the insulation effect is best when the number of MLI layers is 36.

A Design and Implementation of 30w class Er:YAG laser adopted skin and dental clinic. (치과 및 교부과용 30W급 Er:YAG 레이저 설계 및 구현)

  • 김휘영;신경애
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.211-214
    • /
    • 2001
  • For general laser power supply, the secondary of the power transformer is connected to the rectifier and filter capacitor. The output of a rectifier is connected to a switching element in the secondary of the transformer. So the Dower supply is complicated and the loss of switching is considerably. In addition, according to increasing pulse repetition, charged energy of energy-storage capacitor is not transferred sufficiently to flashlamp, and laser output efficiency decreases. In this raper, to improve laser efficiency, we designed and fabricated the power supply in which the SCR was turned on in zero point by the methods of ZCC(zero crossing control), PFN(pulse forming network) in result, laser output efficiency increased by hte 4% other than conventional supply, when a repetition rate was increased by the 10[pps], In 20(pps), efficiency was increased by about 8%

  • PDF

The Design and Construction of a High Efficiency Satellite Electrical Power Supply System

  • Mousavi, Navid
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.666-674
    • /
    • 2016
  • In this paper, a high efficiency satellite electrical power supply system is proposed. The increased efficiency of the power supply system allows for downscaling of the solar array and battery weight, which are among the most important satellite design considerations. The satellite power supply system comprises two units, namely a generation unit and a storage unit. To increase the efficiency of the solar array, a maximum power point tracker (MPPT) is used in the power generation unit. In order to improve the MPPT performance, a novel algorithm is proposed on the basis of the hill climbing method. This method can track the main peak of the array power curve in satellites with long duration missions under unpredicted circumstances such as a part of the array being damaged or the presence of a shadow. A lithium-ion battery is utilized in the storage unit. An algorithm for calculating the optimal rate of battery charging is proposed where the battery is charged with the maximum possible efficiency considering the situation of the satellite. The proposed system is designed and manufactured. In addition, it is compared to the conventional power supply systems in similar satellites. Results show a 12% increase in the overall efficiency of the power supply system when compared to the conventional method.

Numerical Analysis on Changes in Flowrate of Draft Water and Power by Changing Design Parameters of a Long-Distance Water Circulation (저층수 흡입식 광역 순환장치의 설계변수에 따른 배출량 및 소비동력 변화 특성에 대한 수치 해석 연구)

  • Song, Dong-Keun;Hong, Won-Seok;Kim, Young-Cheol;Park, Myong-Ha
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.1
    • /
    • pp.23-28
    • /
    • 2010
  • A draft tube which has impeller to elevate bottom water and spread it over surface of lake water, induces convective circulation of lake water, a Long-Distance Circulation (LDC). Circulation of lake water make stratified water mixed and enhance DO (Dissolved Oxygen) of bottom water. Circulation rate of water is determined by draft rate of the tube, which is dependent on design parameters of the draft tube system, i. e. dimension of impeller and diffuser, inclined angle of impeller, impeller shape, and rotational speed. In this study, change in draft rate and power consumption of circulation equipment was investigated numerically with changing impeller dimension, angle and rotational speed. It was found that flowrate of draft water was increased as the dimensions of draft tube and impeller, and rotational speed and inclined angle of impeller increased. The power consumption was also elevated with increasing parameter values, and final selection of parameter values was made to satisfy target flowrates and power consumption.

Study on 3.3 kV Super Junction Field Stop IGBT According to Design and Process Parameters (설계 및 공정 파라미터에 따른 3.3 kV급 Super Junction FS-IGBT에 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.4
    • /
    • pp.210-213
    • /
    • 2017
  • In this paper, we analyzed the structural design and electrical characteristics of a 3.3 kV super junction FS IGBT as a next generation power device. The device parameters were extracted by design and process simulation. To obtain optimal breakdown voltage, we researched the breakdown characteristics. Initially, we confirmed that the breakdown voltage decreased as trench depth increased. We analyzed the breakdown voltage according to p pillar dose. As a result of the experiment, we confirmed that the breakdown voltage increased as p pillar dose increased. To obtain more than 3.3 kV, the p pillar dose was $5{\times}10^{13}cm^{-2}$, and the epi layer resistance was $140{\Omega}$. We extracted design and process parameters considering the on state voltage drop.

Optimal Design of Resonance Frequency for LLC Converter

  • Chung, Bong-Geun;Moon, Sang-Cheol;Jin, Cheng-Hao
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.159-160
    • /
    • 2015
  • Recently, it is increased to use the portable device with small size. It is also increasing for demand of a small size adapter. To reduce the size of components, switching frequency has to be increased. But it causes higher switching loss and temperature of components. Especially, the temperature of adapter must be limited because adapter can be easily touched when portable device is being charged. To reduce temperature of adapter, high efficiency is essential. To solve this problem, this paper proposes design of resonance frequency optimization for LLC converter with high efficiency and low temperature of passive components.

  • PDF

Study on the optimal design for Planetary Gear Train using simulated annealing (시뮬레이티드 어닐링을 이용한 유성치차열의 최적설계에 관한 연구)

  • 최용혁;정태형;이근호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.172-177
    • /
    • 2004
  • A planetary gear trains has characteristics in compactness, power transformation ability and constant meshing. Usability is increased in applications of auto transmission and industrial gearbox. Study on optimum design of planetary gear train has been progressed on minimization of weight, miniaturization of planetary gear train and improvement of high strength. There are demands of study for the planetary gear train required long lift estimation In this wort being considered life, strength, intereference, contact ratio and aspect ratio, the optimum design algorithm is proposed to reduce the volume of planetary gear train with transferring the same amount of power. In the design of algorithm for planetary gear train, the determination of teeth number is separated to achieve simplicity and the simulated annealing method as a global optimal technique is used for optimal design method.

  • PDF

Study on the Optimal Design for Design Parameter of Planetary Gear Train Using Simulated Annealing (시뮬레이티드 어닐링을 이용한 유성치차열의 설계요소 최적화에 관한 연구)

  • Lee Geun Ho;Choi Young Hyuk;Chong Tae Hyong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.1
    • /
    • pp.58-65
    • /
    • 2005
  • A planetary gear trains has characteristics in compactness, power transformation ability and constant meshing. Usability is increased in applications of auto transmission and industrial gearbox. Study on optimum design of planetary gear train has been progressed on miniaturization of weight, miniaturization of planetary gear train and improvement of high strength. There are demands of study f3r the planetary gear train required long life estimation. In this work being considered life, strength, interference, contact ratio and aspect ratio, the optimum design algorithm is proposed to reduce the volume of planetary gear train with transferring the same amount of power. In the design of algerian for planetary gear train, the determination of teeth number is separated to achieve simplicity and the simulated annealing method as a global optimal technique is used far optimal design method.

Analysis and Design of Continuous Current Mode Tapped-Inductor Boost Converter (전류연속 모드 탭인덕터 부스트 컨버터의 분석과 설계)

  • Kang, Jeong-Il;Han, Sang-Kyoo;Han, Jonghee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.349-356
    • /
    • 2014
  • As the turns ratio of the tapped-inductor contributes to the step-up ratio, the tapped-inductor boost (TIB) converter has significantly increased level of difficulties in its analysis and design compared to the conventional boost converter where the duty ratio is the sole factor affecting the step-up ratio. In this paper, the operation of the continuous current mode TIB converter is briefly reviewed, the characteristics are analyzed in detail, and a design guideline optimizing the loss in the tapped-inductor is presented with a practical design example. Finally, experimental results from a 12V/120V prototype for 0.25A LED driver application are also presented to confirm the design.

Compact Design of the Advanced Encryption Standard Algorithm for IEEE 802.15.4 Devices

  • Song, Oh-Young;Kim, Ji-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.418-422
    • /
    • 2011
  • For low-power sensor networks, a compact design of advanced encryption standard (AES) algorithm is needed. A very small AES core for ZigBee devices that accelerates computation in AES algorithms is proposed in this paper. The proposed AES core requires only one S-Box, which plays a major role in the optimization. It consumes less power than other block-wide and folded architectures because it uses fewer logic gates. The results show that the proposed design significantly decreases power dissipation; however, the resulting increased clock cycles for 128-bit block data processing are reasonable for IEEE 802.15.4 standard throughputs.