• Title/Summary/Keyword: power harvesting

Search Result 555, Processing Time 0.023 seconds

Analysis of an AC/DC Resonant Pulse Power Converter for Energy Harvesting Using a Micro Piezoelectric Device

  • Chung Gyo-Bum;Ngo Khai D.T.
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.247-256
    • /
    • 2005
  • In order to harvest power in an efficient manner from a micro piezoelectric (PZT) device for charging the battery of a remote system, a new AC/DC resonant pulse power converter is proposed. The proposed power converter has two stages in the power conversion process. The first stage includes N-type MOSFET full bridge rectifier. The second stage includes a boost converter having an N-type MOSFET and a P-type MOSFET. MOSFETs work in the $1^{st}$ or $3^{rd}$ quadrant region. A small inductor for the boost converter is assigned in order to make the size of the power converter as small as possible, which makes the on-interval of the MOSFET switch of the boost converter ultimately short. Due to this short on-interval, the parasitic junction capacitances of MOSFETs affect the performance of the power converter system. In this paper, the performance of the new converter is analytically and experimentally evaluated with consideration of the parasitic capacitance of switching devices.

Micro-power Properties of 31Type Triple-morph Cantilever for Energy Harvesting Device (31 타입 트리모프 켄틸레버의 마이크로 발전 특성 연구)

  • Kim, In-Sung;Joo, Hyeon-Kyu;Jung, Soon-Jong;Kim, Min-Soo;Song, Jae-Sung;Jeon, So-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.220-221
    • /
    • 2008
  • With recent advanced in portable electric devices, wireless sensor, MEMS and bio-Mechanics device, the new typed power supply, not conventional battery but self-powered energy source is needed. Particularly, the system that harvests from their environments are interests for use in self powered devices. For very low powered devices, environmental energy may be enough to use power source. Therefore, in other to made piezoelectric energy harvesting device. The made 31 type triple-morph cantilever was resulted from the conditions of 100k$\Omega$, 0.25g, 154Hz respectively. The thick film was prepared at the condition of $6.57V_{rms}$, and its power was $432.31{\mu}W$ and its thickness was $50{\mu}m$.

  • PDF

A Study on SSDP protocol based IoT / IoL Device Discovery Algorithm for Energy Harvesting Interworking Smart Home

  • Lee, Jonghyeok;Han, Jungdo;Cha, Jaesang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.7-12
    • /
    • 2018
  • The spread of IoT (Internet of Things) technology that connects objects based on wired / wireless networks is accelerating, and IoT-based smart home technology that constitutes a super connected network connecting sensors and home appliances existing inside and outside the home is getting popular. In addition, demand for alternative energy technologies such as photovoltaic power generation is rapidly increasing due to rapid increase of consumption of energy resources. Recently, small solar power systems for general households as well as large solar power systems for installation in large buildings are being introduced, but they are effectively implemented due to limitations of small solar panels and lack of power management technology. In this paper, we have studied smart home structure and IoT / IoL device discovery algorithm for energy harvesting system based on photovoltaic power generation, It is possible to construct an efficient smart home system for device control.

Sensed Data based Duty-Cycle Scheduling Scheme for Energy Harvesting Wireless Sensor Networks (에너지 수집형 무선 센서네트워크에서 센싱된 데이터에 기반한 듀티싸이클 스케줄링기법)

  • Park, Hyung-Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.670-675
    • /
    • 2018
  • There is a growing interest in EH-WSN (energy-harvesting wireless sensor networks) that can solve power problems in wireless sensor networks. In EH-WSN, on-off duty cycling is being studied in order to balance energy harvesting and consumption. However, the urgency of the sensed data and the energy harvesting rate in the environmental monitoring EH-WSN are important factors to determine the network performance. Therefore, it is necessary to control the duty-cycle period according to the importance of the sensed data and the energy harvesting rate in addition to simply maintaining the balance of the power. In this paper, we analyze the problem of on-off duty cycling in EH-WSN for environmental monitoring and propose an adaptive duty-cycle scheduling scheme considering the priority of sensed data and energy harvesting rate, where the priority of sensed data determined by sensed value and changing rate. The performance of scheduling scheme was analyzed by computer simulations.

Analytical Models to Predict Power Harvesting with Piezoelectric Transducer

  • Muppala, Raghava Raju;Raju, K. Padma;Moon, Nam-Mee;Jung, Baek-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.1
    • /
    • pp.6-11
    • /
    • 2008
  • Advances in low power design open the possibility to harvest energy from the environment to power electronic circuits. Electrical energy can be harvested from piezoelectric transducer. Piezoelectric materials can be used as mechanisms to transfer mechanical energy usually vibrating system into electrical energy that can be stored and used to power other devices. Micro- to milli-watts power can be generated from vibrating system. We developed definitive and analytical models to predict the power generated from a cantilever beam attached with piezoelectric transducer. Analytical models are pin-force method, enhanced pin-force method and Euler-Bernoulli method. Harmonic oscillations and random noise will be the two different forcing functions used to drive each system. It has been selected the best model for generating electric power based upon the analytical results obtained.

Development of a multi-purpose driving platform for Radish and Chinese cabbage harvester (무·배추 수확 작업을 위한 다목적 주행플랫폼 개발)

  • H. N. Lee;Y. J. Kim
    • Journal of Drive and Control
    • /
    • v.20 no.3
    • /
    • pp.35-41
    • /
    • 2023
  • Radish and Chinese cabbage are the most produced and consumed vegetables in Korea. The mechanization of harvesting operations is necessary to minimize the need for manual labor. This study to develop and evaluate the performance of a multi-purpose driving platform that can apply modular Radish and Chinese cabbage harvesting devices. The multi-purpose driving platform consisted of driving, device control, engine, hydraulic, harvesting, conveying, and loading part. Radish and Chinese cabbage harvesting conducted using the multi-purpose driving platform each harvesting module. The performance of the multi-purpose driving platform was evaluated the field efficiency and loss rate. The total Radish harvesting operation time 34.3 min., including 28.8 min., of harvesting time, 1.9 min., of turning time, and 3.6 min., of replacement time of bulk bag. During Radish harvesting, the field efficiency and average loss rate of the multi-purpose driving platform were 2.0 hr/10a and 3.1 %. Chinese cabbage harvesting operation 49.3 min., including 26.6 min., of harvesting time, 4.6 min., of turning time, and 18.1 min., of replacement time of bulk bag. During Chinese cabbage harvesting, the field efficiency and average loss rate of the multi-purpose driving platform 2.1 hr/10a and 0.1 %. Performance evaluation of the multi-purpose driving platform that harvesting work was possible by installing Radish and Chinese cabbage harvest modules. Performance analysis through harvest performance evaluation in various Radish and Chinese cabbage cultivation environments is necessary.

Design and analysis of vibration micro piezoelectric energy harvesting for wireless sensor nodes (무선 센서 노드용 진동형 마이크로 압전 에너지 하베스팅 설계 및 분석)

  • Yoon, Kyu-Hyung;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.277-277
    • /
    • 2009
  • In this paper, PMPG (Piezoelectric Micro Power Generator) was investigated by ANSYS FEA (Finite Element Analysis) to decrease operating frequency and improve out power. The micro power generator was designed to convert ambient vibration energy to electrical power as a ZnO piezoelectric material. To find optimal model in low vibration ambient, the shape of power generator was changed with different membrane width, thickness, length, and proof mass size. Used the ANSYS modal analysis, bending mode and stress distribution of optimal model were analyzed. Also, the displacement with the frequency range was analyzed by harmonic analysis. From the simulation results, the resonance frequency of optimal model is about 373 Hz and confirmed the possibility of ZnO micro power generator for wireless sensor node applications.

  • PDF

Power Allocation and Splitting Algorithm for SWIPT in Energy Harvesting Networks with Channel Estimation Error (채널 추정 오차가 존재하는 에너지 하베스팅 네트워크에서 SWIPT를 위한 파워 할당 및 분할 알고리즘)

  • Lee, Kisong;Ko, JeongGil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1277-1282
    • /
    • 2016
  • In the next generation wireless communication systems, an energy harvesting from radio frequency signals is considered as a method to solve the lack of power supply problem for sensors. In this paper, we try to propose an efficient algorithm for simultaneous wireless information and power transfer in energy harvesting networks with channel estimation error. At first, we find an optimal channel training interval using one-dimensional exhaustive search, and estimate a channel using MMSE channel estimator. Based on the estimated channel, we propose a power allocation and splitting algorithm for maximizing the data rate while guaranteeing the minimum required harvested energy constraint, The simulation results confirm that the proposed algorithm has an insignificant performance degradation less than 10%, compared with the optimal scheme which assumes a perfect channel estimation, but it can improve the data rate by more than 20%, compared to the conventional scheme.

A Study on Efficiency of Energy Conversion for a Piezoelectric Power Harvesting Using Polyvinylidene Fluorid Film (PVDF 필름을 이용한 효과적인 에너지 하베스팅에 관한 연구)

  • Hur, Won-Young;Lee, Tae-Yong;Lee, Kyung-Chun;Hwang, Hyun-Suk;Song, Joon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.5
    • /
    • pp.422-426
    • /
    • 2011
  • Piezoelectric materials can be used to convert mechanical energy into electrical energy. In this study, we investigated the possibility of harvesting from mechanical vibration force using a high efficient piezoelectric material-polyvinylidene fluoride (PVDF). A piezoelectric energy harvesting system consists of rectifier, filter capacitor, resistance. The experiments were carried out with impacting force to PVDF film with the thickness of 1 ${\mu}m$. The output power was measured with change in the load resistance value from 100 ${\Omega}$ to 2.2 $M{\Omega}$. The highest power was obtained under optimization by selection of suitable resistive load and capacitance. A power of 0.3082 ${\mu}W/mm^2$ was generated at the external vibration force of 5 N (10 Hz) across a 1 $M{\Omega}$ optimal resistor. Also, the maximum power of 0.345 ${\mu}W/mm^2$ was generated at 22 ${\mu}F$ and 1 $M{\Omega}$. The developed system was expected at a solution to overcome the critical problem of making up small size energy harvester.

A fully UHF-powered smart sensor tag in food freshness monitoring (음식물 신선도 모니터링을 위한 풀 패시브 UHF 스마트 센서 태그)

  • Lam, Binh Minh;Chung, Wan-Young
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.3
    • /
    • pp.89-96
    • /
    • 2018
  • This study aims to develop a fully passive smart sensing tag utilizing RF (Radio Frequency) energy harvesting technology at UHF (Ultra High Frequency) band of 915MHz. To optimize the power collected under various radiated conditions, an efficient energy harvesting module exploiting a boost circuit with maximum power point tracking (MPPT) is employed. Specifically, the proposed tag features two orthogonal antennas to enhance its capability of both energy scavenging and data transmissions. The experimental result shows that the developed smart sensor tag can scavenge an RF input power of as low as 0.19mW at a distance of 4 meters for a 3.6Vdc output. Furthermore, the proposed smart sensor tag performs the feasibility of completely autonomous monitoring food freshness at 2 meters with a low-power sensor array.