A fully UHF-powered smart sensor tag in food freshness monitoring

음식물 신선도 모니터링을 위한 풀 패시브 UHF 스마트 센서 태그

  • Lam, Binh Minh (Department of Electronic Engineering, Pukyong National University) ;
  • Chung, Wan-Young (Department of Electronic Engineering, Pukyong National University)
  • Received : 2018.08.23
  • Accepted : 2018.09.20
  • Published : 2018.09.30

Abstract

This study aims to develop a fully passive smart sensing tag utilizing RF (Radio Frequency) energy harvesting technology at UHF (Ultra High Frequency) band of 915MHz. To optimize the power collected under various radiated conditions, an efficient energy harvesting module exploiting a boost circuit with maximum power point tracking (MPPT) is employed. Specifically, the proposed tag features two orthogonal antennas to enhance its capability of both energy scavenging and data transmissions. The experimental result shows that the developed smart sensor tag can scavenge an RF input power of as low as 0.19mW at a distance of 4 meters for a 3.6Vdc output. Furthermore, the proposed smart sensor tag performs the feasibility of completely autonomous monitoring food freshness at 2 meters with a low-power sensor array.

본 연구는 915MHz의 UHF (Ultra High Frequency) 대역에서 RF 에너지 하베스팅 기술을 이용하는 풀 패시브 스마트 센서태그 개발을 목표로 한다. 다양한 방사 조건에서 전력수집을 최적화하기 위해, 최대전력점추적(MPPT: maximum power point tracking)을 활용하는 효율적인 에너지 하베스팅 모듈이 사용된다. 특히 제안하는 태그는 에너지 획득과 데이터 전송 능력 향상을 위해 두개의 직교 안테나를 사용한다. 실험 결과 개발된 스마트 센서태그는 4m 거리에서 DC 3.6V 출력을 위해 0.19mW 정도의 낮은 입력 RF 전력을 획득 할 수 있음을 보인다. 더욱이 제안하는 스마트 센서태그는 저전력 센서어레이로 2m 거리에서 무전원 식품 신선도 모니터링을 완벽하게 실현가능하다.

Keywords

References

  1. Jennifer Yick, Biswanath Mukherjee, Dipak Ghosal, "Wireless sensor network survey,"Computer Networks, vol. 52, no. 12, pp. 2292-2330, 2008. https://doi.org/10.1016/j.comnet.2008.04.002
  2. A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari and M. Ayyash, "Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications," IEEE Commun Surv. Tut., vol. 17, no. 4, pp. 2347-2376, 2015. https://doi.org/10.1109/COMST.2015.2444095
  3. S. Sudevalayam and P. Kulkarni, "Energy Harvesting Sensor Nodes: Survey and Implications," IEEE Commun Surv. Tut., vol. 13, no. 3, pp. 443-461, 2011. https://doi.org/10.1109/SURV.2011.060710.00094
  4. N.A. Bhatti, M.H. Alizai, A. A. Syed, L. Mottola, "Energy Harvesting and Wireless Transfer in Sensor Network Applications: Concepts and Experiences," ACM Trans. Sens. Netw., vol. 12, no. 3, Aug. 2016.
  5. X. Lu, P. Wang, D. Niyato, D. I. Kim and Z. Han, "Wireless Networks With RF Energy Harvesting: A Contemporary Survey," IEEE Commun Surv. Tut., vol. 17, no. 2, pp. 757-789, 2015. https://doi.org/10.1109/COMST.2014.2368999
  6. Benjamin L. Cannon, James F. Hoburg, Daniel D. Stancil, Seth Copen Goldstein, "Magnetic Resonant Coupling As a Potential Means for Wireless Power Transfer to Multiple Small Receivers," IEEE T. Power Electr., vol. 24, no. 7, July 2009.
  7. Alanson P. Sample, David A. Meyer, Joshua R. Smith, "Analysis, Experimental Results, and Range Adaptation of Magnetically Coupled Resonators for Wireless Power Transfer," IEEE T. Ind. Electron., vol. 58, no. 2, Feb. 2011.
  8. M. Hata, "Empirical formula for propagation loss in land-mobile radio service," IEEE Trans. Veh. Techno, Vols. VT-2, p. 317-32, Aug. 1980.
  9. P. Nintanavongsa, U. Muncuk, D. R. Lewis and K. R. Chowdhury, "Design Optimization and Implementation for RF Energy Harvesting Circuits," IEEE J. Em. Sel. Top. C. and Systems, vol. 2, no. 1, pp. 24-33, March 2012. https://doi.org/10.1109/JETCAS.2012.2187106
  10. P. V. Nikitin, K. V. S. Rao, R. Martinez and S. F. Lam, "Sensitivity and Impedance Measurements of UHF RFID Chips," IEEE T. Microw. Theory, vol. 57, no. 5, pp. 1297-1302, 2009. https://doi.org/10.1109/TMTT.2009.2017297
  11. Alimenti, L. R. Federico, "Theory of zero-power RFID sensors based on harmonic generation and orthogonally polarized antennas," Progress In Electromagnetics Research, vol. 134, pp. 337-357, 2013. https://doi.org/10.2528/PIER12090103
  12. Z. Popovic et al., "Scalable RF Energy Harvesting," IEEE T. Microw. Theory, vol. 62, no. 4, pp. 1046-1056, 2014. https://doi.org/10.1109/TMTT.2014.2300840
  13. R. R. Ramirez and F. De Flaviis, "A mutual coupling study of linear and circular polarized microstrip antennas for diversity wireless systems," IEEE T. Antenn. Propag., vol. 51, no. 2, pp. 238-248, 2003. https://doi.org/10.1109/TAP.2003.809089
  14. Warda Saeed, Nosherwan Shoaib, Hammad M. Cheema, and Muhammad U. Khan, "RF Energy Harvesting for Ubiquitous, Zero Power Wireless Sensors," Int. J. Antenn. Propag., vol. 2018, 2018.
  15. Thang Viet Tran, Nam Trung Dang, Wan-Young Chung, "Battery-free smart-sensor system for real-time indoor air quality monitoring," Sensors Actuat. B:-Chem., vol. 248, pp. 930-939, 2017. https://doi.org/10.1016/j.snb.2017.01.198
  16. P. Nintanavongsa, U. Muncuk, D. R. Lewis and K. R. Chowdhury, "Design Optimization and Implementation for RF Energy Harvesting Circuits," IEEE J. Em. Sel. Top. C., vol. 2, no. 1, pp. 24-33, 2012.
  17. T. Soyata, L. Copeland and W. Heinzelman, "RF Energy Harvesting for Embedded Systems: A Survey of Tradeoffs and Methodology," IEEE Circ. Syst. Mag., vol. 16, no. 1, pp. 22-57, 2016. https://doi.org/10.1109/MCAS.2015.2510198
  18. Nam T. Dang and Wan Young Chung, "Fish-Box Quality and Safety Monitoring in Fish Supply Chain using UHF RFID Smart Tag," in 2016 Conference of Korea Institute of Signal Processing and Systems, Busan, 2016.