• Title/Summary/Keyword: power electronics drives

Search Result 468, Processing Time 0.029 seconds

Design of Neural Network Controllers for High Speed Induction Motor Drives (초고속 유도전동기 구동을 위한 신경회로망 제어기 설계)

  • 김윤호;이병순;성세진
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.39-45
    • /
    • 1997
  • In this paper, a high speed motor drive system using an indirect adaptive neural network controller is proposed. In the variable high speed motor drives, the speed response can be deteriorated by long settling time and high overshoot. To obtain a good dynamical performance, an adaptive feedforward controller consisted of Neural Network Controller(NNC) and Neural Network Emulator(NNE) is applied. The NNE is used to identify the parameters and characteristics of high speed motor. To train the controller, the weights are dynamically adjusted using the back propagation algorithm. Computer simulation and implementation of the proposed system is described.

  • PDF

Low-Cost Fault Diagnosis Algorithm for Switch Open-Damage in BLDC Motor Drives

  • Park, Byoung-Gun;Lee, Kui-Jun;Kim, Rae-Young;Hyun, Dong-Seok
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.702-708
    • /
    • 2010
  • In this paper, a fault diagnosis algorithm for brushless DC (BLDC) motor drives is proposed to maintain control performance under switch open-damage. The proposed fault diagnosis algorithm consists of a simple algorithm using measured phase current information and it detects open-circuit faults based on the operating characteristic of BLDC motors. The proposed algorithm quickly recovers control performance due to its short detection time and its reconfiguration of the system topology. It can be embedded into existing BLDC drive software as a subroutine without additional sensors. The feasibility of the proposed fault diagnosis algorithm is proven by simulation and experimental results.

Open Circuit Fault Diagnosis Using Stator Resistance Variation for Permanent Magnet Synchronous Motor Drives

  • Park, Byoung-Gun;Kim, Rae-Young;Hyun, Dong-Seok
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.985-990
    • /
    • 2013
  • This paper proposes a novel fault diagnosis scheme using parameter estimation of the stator resistance, especially in the case of the open-phase faults of PMSM drives. The stator resistance of PMSMs can be estimated by the recursive least square (RLS) algorithm in real time. Fault diagnosis is achieved by analyzing the estimated stator resistance of each phase according to the fault condition. The proposed fault diagnosis scheme is implemented without any extra devices. Moreover, the estimated parameter information can be used to improve the control performance. The feasibility of the proposed fault diagnosis scheme is verified by simulation and experimental results.

Virtual Signal Injected MTPA Control for DTC Five-Phase IPMSM Drives

  • Liu, Guohai;Yang, Yuqi;Chen, Qian
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.956-967
    • /
    • 2019
  • This paper introduces a virtual signal injected maximum torque per ampere (MTPA) control strategy for direct-torque-controlled five-phase interior permanent magnet synchronous motor (IPMSM) drives. The key of the proposed method is that a high frequency signal is injected virtually into the stator flux linkage. Then the responding stator current is calculated and regulated to compensate the amplitude of the flux linkage. This is done according to the relationship between the stator current and the stator flux linkage. Since the proposed method does not inject any real signals into the motor, it does not cause any of the problems associated with high-frequency signals, such as additional copper loss and extra torque ripple. Simulation and experimental results are offered to verify the effectiveness of the proposed method.

Robust Predictive Speed Control for SPMSM Drives Based on Extended State Observers

  • Xu, Yanping;Hou, Yongle;Li, Zehui
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.497-508
    • /
    • 2019
  • The predictive speed control (PSC) strategy can realize the simultaneous control of speed and current by using one cost function. As a model-based control method, the performance of the PSC is vulnerable to model mismatches such as load torque disturbances and parameter uncertainties. To solve this problem, this paper presents a robust predictive speed control (RPSC) strategy for surface-mounted permanent magnet synchronous motor (SPMSM) drives. The proposed RPSC uses extended state observers (ESOs) to estimate the lumped disturbances caused by load torque changes and parameter mismatches. The observer-based prediction model is then compensated by using the estimated disturbances. The introduction of ESOs can achieve robustness against predictive model uncertainties. In addition, a modified cost function is designed to further suppress load torque disturbances. The performance of the proposed RPSC scheme has been corroborated by experimental results under the condition of load torque changes and parameter mismatches.

Disturbance Observer-based Current Measurement Offset Error Compensation in Vector-controlled SPMSM Drives (표면 부착형 동기 전동기 벡터 제어에서의 외란 관측기 기반 전류 측정 오프셋 오차 보상 방법)

  • Lee, Sang-Min;Lee, Kibok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.402-409
    • /
    • 2022
  • In vector-controlled drive systems, the current measurement offset error causes unwanted torque ripple, resulting in speed and torque control performance degradation. The current measurement offset error is caused by various factors, including thermal drift. This study proposes a simple DC offset error compensation method for a surface permanent magnet motor based on a disturbance observer. The disturbance observer is designed in the stationary reference frame. The proposed method uses only the measured current and machine parameters without additional hardware. The effect of parameter variations is analyzed, and the performance of the current measurement offset error compensation method is validated using simulation and experimental results.

Novel Zero Voltage Transition PWM Converter for Switched Reluctance Motor Drives (SRM 구동을 위한 새로운 ZVT-PWM 컨버어터)

  • Kim, Won-Ho;Kim, Jong-Su;Jo, Jeong-Gu;Im, Geun-Hui;Kim, Cheol-U
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.8
    • /
    • pp.455-460
    • /
    • 1999
  • A novel zero-voltage-transition (ZVT) PWM converter for switched reluctance motor (SRM) drives is proposed. A simple auxiliary circuit which consists of one active switch, one resonant inductor, and three diodes provides ZVS condition to all main switches and diodes allowing high frequency operation of the converter with high efficiency. The auxiliary circuit is placed in parallel with the main power flow path and thus it handles only a small fraction of the main power. So, the power rating of the auxiliary circuit can be very small (about 30% of main power). So, the auxiliary circuit can be realized with small power rating and low cost. Operation, features and characteristics of the proposed converter are illustrated and verified on a 1.5 kW, 50 kHz IGBT based (a MOSFET for the auxiliary with) experimental circuit.

  • PDF

Input Current/Torque Ripple Compensation of Current Source Induction Motor Drives using Active Power Filters (능동전력필터에 의한 전류형 인버터 구동 유도모터의 입력전류 및 토크맥동 보상)

  • 정영국;조재연;임영철
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.158-163
    • /
    • 2001
  • Current Source Inverter(CSI), operated in square wave mode, is more efficient thant the PWM CSI because of increased cost, greater complexity of control algorithm and substantial switching losses, EMI. But, the square wave output current of CSI, rich in low order harmonics produce motor torque ripples. Therefore, in this paper, describes active power filters for compensating square wave input current of current source induction motor. Also, notch filtering as compensation algorithm is employed. To confirm the validity of proposed system, PSIM simulation results are presented and discussed.

  • PDF

A DTC Stator Flux Algorithm for the Performance Improvement of Induction Traction Motors

  • Van-Tien, Pham;Zheng, Trillion Q.;Yang, Zhong-ping;Lin, Fei;Do, Viet-dung
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.572-583
    • /
    • 2016
  • In view of the speed control characteristics of induction traction motors and the problems of direct torque control (DTC) algorithms in current applications, this paper presents a DTC algorithm characterized by a symmetrical polygon flux control and a closed loop power control in the constant-torque base speed region and constant-power field-weakening region of induction traction motors. This algorithm only needs to add a stator flux control algorithm to the traditional DTC structures. This has the benefit of simplicity, while maintaining the features of traditional algorithms such as a rapid dynamic response, uncomplicated control circuit, reduced dependence on motor parameters, etc. In addition, it obtains a smoother flux trajectory that is conducive to improvement of the harmonic elimination capability, the switching frequency utilization as well as the torque and power performance in the field-weakening region. The effectiveness and feasibility of this DTC algorithm are demonstrated by both theoretical analysis and experimental results.

Maximum Torque Operation of IPMSM Drives without Speed & Rotor Position Sensors Using An Extended Kalman Filter (확장된 칼만 필터를 이용한 속도 및 검출기가 없는 IPMSM의 최대토크 운전)

  • 김윤호;윤병도;국윤상
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.21-25
    • /
    • 1996
  • To control the speed of IPMSM drives it is necessary to know the speed and the rotor position. This is normally done by measurement of this values with electromechenical sensors. In this paper, a new approach to the position elimination method for the high performance variable speed IPMSM drives with the current controlled PWM technique is presented. For the high performance drive capability in the speed region, a Extended Kalman filter algorithm is adopted to estimate the rotor position as well as the angular velocity for the practical sensorless IPMSM drives. The high performance drive characteristics of the proposed method are verified using the wide simulation.

  • PDF