• Title/Summary/Keyword: power conversion efficiency

Search Result 1,152, Processing Time 0.029 seconds

Comparative Study on 220V AC Feed System and 300V DC Feed System for Internet Data Centers

  • Kim, Hyo-Sung
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.157-163
    • /
    • 2012
  • Internet Data Centers (IDCs), which are essential facilities in the modern IT industry, typically have scores of MW of concentrated electric loads. The provision of an Uninterruptible Power Supply (UPS) is necessary for the power feed system of IDCs owing to the need for stable power. Thus, conventional IDC AC power feed systems have three cascaded power conversion stages, (AC-DC), (DC-AC), and (AC-DC), resulting in a very low conversion efficiency. In comparison, DC power feed systems require only a single power conversion stage (AC-DC) to supply AC main power to DC server loads, resulting in comparatively high conversion efficiency and reliability [4-11]. This paper compares the efficiencies of a 220V AC power feed system with those of a 300V DC power feed system under equal load conditions, as established by the Mok-Dong IDC of Korea Telecom Co. Ltd. (KT). Experimental results show that the total operation efficiency of the 300V DC power feed system is approximately 15% higher than that of the 220V AC power feed system.

A study on Improvement of Conversion Efficiency of Rectifying circuit for Wireless Power Transmission (무선전력전송용 정류회로의 변환효율 개선에 관한 연구)

  • Park, Dong-Kook
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.655-660
    • /
    • 2010
  • This paper examines RF-to-DC conversion efficiency of rectifying circuit for wireless power transmission. The rectifying circuit consists of low pass filter, diode circuits and dc pass filter. All these components may be effect on the conversion efficiency. Using the simulation, we study these components how to effect on the conversion efficiency. On the basis of the simulation results, the 912MHz rectifying circuit with 50% efficiency at low input power such as 0dBm is fabricated and its characteristics are measured.

A Study on the Near Infrared Ray Wavelength Conversion Film for Improving Conversion Efficiency of Solar Cell (태양전지 변환 효율 향상을 위한 근적외선 파장 변환 필름에 관한 연구)

  • Park, Byung Kyu;Park, Gye Choon;Lee, Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.11
    • /
    • pp.699-704
    • /
    • 2017
  • The amount of electric power for photovoltaic power generation depends on the location of the power plant and the direction of solar cell. The solar cell controls the generation of solar power plants. Therefore, the structure of solar cell, manufacturing method, and optic technology were factors contributing to increased solar cell efficiency; however, the technical limit has been reached. Herein, we propose a new method to increase the solar cell efficiency using a wavelength conversion technology that converts ultraviolet and infrared rays, which are not effectively used in solar cells, into effective wavelength of solar cell. We used fluoride $Na(Ca)YF_4$ phosphor for wavelength conversion. Then, a wavelength-conversion fluorescent paste, prepared using an organic-silicon binder, was used to prepare a film that was applied to Si solar cells. It was confirmed that conversion efficiency improved by 5% or more.

Rectifier Design Using Distributed Greinacher Voltage Multiplier for High Frequency Wireless Power Transmission

  • Park, Joonwoo;Kim, Youngsub;Yoon, Young Joong;So, Joonho;Shin, Jinwoo
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.1
    • /
    • pp.25-30
    • /
    • 2014
  • This paper discusses the design of a high frequency Greinacher voltage multiplier as rectifier; it has a greater conversion efficiency and higher output direct current (DC) voltage at high power compared to a simple halfwave rectifier. Multiple diodes in the Greinacher voltage multiplier with distributed circuits consume excited power to the rectifier equally, thereby increasing the overall power capacity of the rectifier system. The proposed rectifiers are a Greinacher voltage doubler and a Greinacher voltage quadrupler, which consist of only diodes and distributed circuits for high frequency applications. For each rectifier, the RF-to-DC conversion efficiency and output DC voltage for each input power and load resistance are analyzed for the maximum conversion efficiency. The input power with maximum conversion efficiency of the designed Greinacher voltage doubler and quadrupler is 3 and 7 dB higher, respectively;than that of the halfwave rectifier.

Study on conversion efficiency of RF-DC converter with series diode (직렬 연결 RF-DC 변환기의 변환효율에 관한 연구)

  • Choi, Ki-Ju;Hwang, Hee Yong
    • Journal of Industrial Technology
    • /
    • v.30 no.A
    • /
    • pp.69-73
    • /
    • 2010
  • In this paper, we designed the RF-DC converter used in wireless power transmission system and studied how to design the RF-DC converter of high conversion efficiency. The RF-DC converter operate at 2.45GHz and the diode is connected with series. The RF-DC converter uses shorted stub for DC loop and matching. We can divide the RF-DC converter circuit into four blocks. The reflection coefficients between the blocks were optimized for the maximum conversion efficiency at 0 dBm input power and $1300{\Omega}$ load impedance. The final design of the RF-DC converter has a 52 percent conversion efficiency.

  • PDF

The optimum conversion efficiency in nile blue arabinose system by photogalvanic cell

  • Lal, Mohan;Gangotri, K.M.
    • Advances in Energy Research
    • /
    • v.3 no.3
    • /
    • pp.143-155
    • /
    • 2015
  • The Nile blue has been used as a photosensitizer with Arabinose as a reductant in photogalvanic cell for optimum conversion efficiency and storage capacity. Reduction cost of the photogalvanic cell for commercial utility. The generated photopotential and photocurrent are 816.0 mV and $330.0{\mu}A$ respectively. The maximum power of the cell is $269.30{\mu}W$ where as the observed power at power point is $91.28{\mu}W$. The observed conversion efficiency is 0.6095% and the fill factor 0.2566 has been experimentally found out at the power point of the photogalvanic cell, whereas the absolute value is 1.00. The photogalvanic cell so developed can work for 120.0 minutes in dark if it is irradiated for 200.0 minutes that is the storage capacity of photogalvanic cell is 60.00%. The effects of different parameters on the electrical output of the photogalvanic cell have been observed. A mechanism has also been proposed for the photogeneration of electrical energy.

Comparative Study on AC and DC Feed System for Internet Data Center (인터넷데이터센터의 교류, 직류급전시스템 비교 분석)

  • Kim, Du-Hwan;Kim, Hyo-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • Internet Data Centers (IDC), as essential facilities for modern IT industry, typically have scores of MW of concentrated electric loads. Uninterruptible Power Supplies (UPS) are necessary for the power feed system of IDCs because of stable power requirement. Thus, conventional AC power feed systems of IDCs have three cascaded power conversion stages such as (AC-DC), (DC-AC), and (AC-DC), which results in very low conversion efficiency. On the contrary, DC power feed systems need just a single power conversion stage (AC-DC) supplying AC mains power to DC server loads, which gives comparatively high conversion efficiency and reliability. This paper compares the efficiencies between 220V AC power feed system and 300V DC power feed system on equal load conditions which were established in Mok-Dong IDC of Korea Telecom company (KT). Experimental results show that the total operation efficiency of the 300V DC power feed system is around 15% higher than that of the 220V AC power feed system.

Wireless Energy Transmission High-Efficiency DC-AC Converter Using High-Gain High-Efficiency Two-Stage Class-E Power Amplifier

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.161-165
    • /
    • 2011
  • In this paper, a high-efficiency DC-AC converter is used for wireless energy transmission. The DC-AC convertter is implemented by combining the oscillator and power amplifier. Given that the conversion efficiency of a DC-AC converter is strongly affected by the efficiency of the power amplifier, a high-efficiency power amplifier is implemented using a class-E amplifier structure. Also, because of the low output power of the oscillator connected to the input stage of the power amplifier, a high-gain two-stage power amplifier using a drive amplifier is used to realize a high-output power DC-AC converter. The high-efficiency DC-AC converter is realized by connecting the oscillator to the input stage of the high-gain high-efficiency two-stage class-E power amplifier. The output power and the conversion efficiency of the DC-AC converter are 40.83 dBm and 87.32 %, respectively, at an operation frequency of 13.56 MHz.

Voltage Clamped Tapped-Inductor Boost Converter with High Voltage Conversion Ratio (고승압비를 갖는 전압 클램프 탭인덕터 부스트 컨버터)

  • Kang, Jung-Min;Lee, Sang-Hyun;Hong, Sung-Soo;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.34-40
    • /
    • 2012
  • In this paper, voltage clamped tapped-inductor boost converter with high voltage conversion ratio is proposed. The conventional tapped-inductor boost converter has a serious drawback such as high voltage stresses across all power semiconductors due to the high resonant voltage caused by the leakage inductor of tapped inductor. Therefore, the dissipative snubber is essential for absorbing this resonant voltage, which could degrade the overall power conversion efficiency. To overcome these drawbacks, the proposed converter employs a voltage clamping capacitor instead of the dissipative snubber. Therefore, the voltage stresses of all power semiconductors are not only clamped as the output voltage but the power conversion efficiency can also be considerably improved. Moreover, since the energy stored in the clamp capacitor is transferred to the output side together with the input energy, the proposed converter can achieve the higher voltage conversion ratio than the conventional tapped-inductor boost converter. Therefore, the proposed converter is expected to be well suited to various applications demanding the high efficiency and high voltage conversion ratio. To confirm the validity of the proposed circuit, the theoretical analysis and experimental results of the proposed converter are presented.

Efficiency Comparison according to Power Conversion Method and Performance Estimation for Battery Source BLDC Motor Propulsion System of Small Ships (축전지 전원을 사용한 소형선박 추진용 BLDC모터의 전력변환방식에 따른 효율 비교 및 성능 추정)

  • Jeong, T.Y.;Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.1
    • /
    • pp.27-33
    • /
    • 2010
  • We investigate some operation characteristics and energy efficiency of the BLDC motor system driven by different two types power conversion method depends on same battery source for applying to electrical motor propulsion system of a small ship. Also, we suggest an estimation manner of operating performances such as total running distance and operating speed of ships from basic discharge voltage characteristics of batteries. Through some experiments, direct power conversion was better than indirect method on the view point of energy efficiency and the voltage discharge characteristics could be used as important design factor for estimating operating performances of small ships driven by electrical motors.