Browse > Article
http://dx.doi.org/10.12989/eri.2015.3.3.143

The optimum conversion efficiency in nile blue arabinose system by photogalvanic cell  

Lal, Mohan (Solar Energy Laboratory, Department of Chemistry, Jai Narain Vyas University)
Gangotri, K.M. (Solar Energy Laboratory, Department of Chemistry, Jai Narain Vyas University)
Publication Information
Advances in Energy Research / v.3, no.3, 2015 , pp. 143-155 More about this Journal
Abstract
The Nile blue has been used as a photosensitizer with Arabinose as a reductant in photogalvanic cell for optimum conversion efficiency and storage capacity. Reduction cost of the photogalvanic cell for commercial utility. The generated photopotential and photocurrent are 816.0 mV and $330.0{\mu}A$ respectively. The maximum power of the cell is $269.30{\mu}W$ where as the observed power at power point is $91.28{\mu}W$. The observed conversion efficiency is 0.6095% and the fill factor 0.2566 has been experimentally found out at the power point of the photogalvanic cell, whereas the absolute value is 1.00. The photogalvanic cell so developed can work for 120.0 minutes in dark if it is irradiated for 200.0 minutes that is the storage capacity of photogalvanic cell is 60.00%. The effects of different parameters on the electrical output of the photogalvanic cell have been observed. A mechanism has also been proposed for the photogeneration of electrical energy.
Keywords
conversion efficiency; photogalvanic cell; power point; fill factor; nile blue; arabinose;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Albery, W.J. and Archer, D.M. (1977), "Optimum efficiency of photogalvanic cells for solar energy conversion", Nature, 270, 399-402.   DOI
2 Amouyal, E. (1995), "Photochemical production of hydrogen and oxygen from water: A review and state of the art", Sol. Energy Mater. Sol. Cell., 38, 249-276.   DOI   ScienceOn
3 Balzani, V., Credi, A. and Venturi, M. (2007), "Photochemical conversion of solar energy", J. Chem. Sus. Chem., 1, 26-58.
4 Becquerel, E. (1839), "On electron effects under the influence of solar radiation", Compet. Rend., 9, 561.
5 Bolton, J.R. and Hall, D.O. (1979), "Photochemical conversion and storage of solar energy", Ann. Rev. Energy, 4, 353-401.   DOI
6 Davis, D.D., King, G.K., Stevenson, K.L., Birnbaum, E.R. and Hageman, J.H. (1977), "Photoredox reactions of metal ions for photochemical solar energy conversion", J. Solid State Chem., 22, 63-70.
7 Dube, S., Lodha, A., Sharma, S.L. and Ameta, S.C. (1993), "Use of an Azur-A-NTA system in photogalvanic cell for solar energy conversion", Int. J. Energy Res., 17, 359-363.   DOI   ScienceOn
8 Eisenberg, M. and Silverman, H.P. (1961), "Photo-electrochemical cell", Electrochimica Acta, 51, 1-12.
9 Fujishima, A. and Honda, K. (1972), "Electrochemical photolysis of water at a semiconductor electrode", Nature, 238, 37-38.   DOI   ScienceOn
10 Gangotri, K.M. and Lal, C. (2000), "Studies in photogalvanic effect and mixed dyes system: EDTA Methylene blue-Toludiene blue system", Int. J. Energy Res., 24, 365-371.   DOI
11 Gangotri, K.M. and Lal, M. (2013), "Study of photogalvanic effect in photogalvanic cell containing mixed surfactant (NaLS+CTAB) methylene blue as a photosensitizer and xylose as a reductant", Res. J. Chem. Sci., 3(3), 20-25.
12 Gangotri, K.M. and Lal, M. (2014), "Use of Trypan blue- Arabinose system in photogalvanic cell for solar energy conversion and storage", IJESRT, 3(6), 447-454.
13 Gangotri, K.M. and Meena, R.C. (2001), "Use of reductant and photosensitizer in photogalvanic cells for solar energy conversion and storage: Oxalic acid-methylene blue system", J. Photochem. Photobiol A Chem., 141, 175-177.   DOI   ScienceOn
14 Gangotri, K.M. and Regar, O.P. (1998), "Use of azine dye as a photosensitizer in solar cells: different reductants-safranine system", Int. J. Energy Res., 21, 1345-1350.
15 Gangotri, P. and Gangotri, K.M. (2009), "Studies of the micellar effect on photogalvanic: solar energy conversion and storage in EDTA-safranine O-Tween-80 system", Energy Fuel., 23, 2367-2372.
16 Genwa, K.R., Kumar, A. and Sonel, A. (2009), "Photogalvanic solar energy conversion: Study with photosensitizer Toluidine blue and Malachite green in presence of NaLS", Appl. Energy, 86, 1431-1436.   DOI   ScienceOn
17 Genwa, K.R. and Chouhan, A. (2006), "Role of heterocyclic dye (Azur A) as a photosensitizer in photogalvanic cell for solar energy conversion and storage: NaLS-ascorbic acid system", Solar Energy, 80, 1213-1219.   DOI   ScienceOn
18 Genwa, K.R. and Genwa, M. (2008), "Photogalvanic cell: A new approach for green and sustainable chemistry", Sol. Energy Mater. Sol. Cell., 9, 2522-529
19 Genwa, K.R. and Khatri, N.C. (2007), "Role of azine dye as photosensitizer in Photogalvanic cells for solar energy conversion and storage: Brij-35-Safranine-DTPA system", J. Ind. Chem. Soc., 84, 269-272.
20 Groenen, E.J., Groot, De M.S., Ruiter, De R. and Wit, De N. (1984), "Triton X-100 micelles in the ferrous/thionine photogalvanic cell", J. Phys. Chem., 88, 1449-1454.   DOI
21 Hagfeldt, A., Didriksson, B., Palmqvist, T., Lindstrom, H., Sodergren, S., Rensmo, H. and Lindquist, S.E. (1994), "Verification of high efficiencies for the Gratzel cell: A 7% efficient solar cell based on dyesensitized colloidal $TiO_2$ films", Sol. Energy Mater. Sol. Cell., 31, 481-486.   DOI   ScienceOn
22 Jana, A.K. and Bhowmik, B.B. (1999), "Enhancement in power output of solar cells consisting of mixed dye", J. Photochem. Photobiol A Chem., 122, 53-56.   DOI   ScienceOn
23 Kalyanasundaram, K. and Gratzel, M. (2008), "Photochemical conversion and storage of solar energy", J.Photochem Photobiol A Chem., 40, 807-822.
24 Khamesra, S., Ameta, R., Bala, M. and Ameta, S.C. (1990), "Use of micelles in photogalvanic cell for solar energy conversion and storage: Azur A-glucose system", Int. J. Energy Res., 14, 163-167.   DOI
25 Mahmoud, S.A. and Mohamed, B.S. (2015), "Study on the performance of photogalvanic cell for solar energy conversion and storage", Int. J. Electrochem. Sci., 10, 3340-3353.
26 Lal, C. (2007), "Use of mixed dyes in a photogalvanic cell for solar energy conversion and storage: EDTAthionine-Azure B system", J. Power Sour., 164, 926-930.   DOI   ScienceOn
27 Lichtin, N.D. (1976), "Photochemical conversion of solar energy", Annual Progress Report, Boston Univ. MA.
28 Lymperopoulos, K.A., Botsaris, P.N., Angelakoglou, K. and Gaidajis, G. (2015), "Sustainable energy action plans of medium-sized municipalities in north Greece", Adv. Energy Res., 3(1), 11-30.   DOI   ScienceOn
29 Meena, J. and Gangotri, K.M. (2015), "EDTA-TB-Cetyl Pyridinium chloride in photogalvanic cell for solar energy conversion and storage", IJICSE, 2(1), 21-25.
30 Meena, S.B., Saini, S.R. and Meena, R.C. (2015), "Role of photosensitizer (Orange -G) in photogalvanic cell for generation of solar energy", IJESRT, 4(2), 135-141.
31 Memming, R. (1980), "Solar energy conversion by photoelectrochemical processes", Electrochimica Acta, 25, 77-88.   DOI   ScienceOn
32 Murthy, A.S.N. and Reddy, K.S. (1979), "Photochemical energy conversion studies in systems containing methylene blue", Int. J. Energy Res., 3, 205-210.   DOI   ScienceOn
33 Pan, R.L., Bhardwaj, R. and Gross, E.L. (1993), "Photochemical energy conversion by a thiazine photosynthetic photoelectro-chemical cell", J. Chem. Tech. Biotech., 33A, 39-48.
34 Pramila, S. and Gangotri, K.M. (2007), "Use of anionic micelles in photogalvanic cells for solar energy conversion and storage Dioctylsulfosuccinate-mannitol-safranine system", Energy Sour. Part: A, 29, 1253-1257.   DOI
35 Rideal, E.K. and Williams, E.G. (1925), "The action of light on ferrous-ferric-iodide-equilibrium", J. Chem. Soc., 127, 258-269.   DOI
36 Rabinowitch, E. (1940), "The Photogalvanic effect I. The Photochemical Properties of the thionine-iron system", J. Phys. Chem., 8, 551-559.   DOI
37 Rabinowitch, E. (1940), "The Photogalvanic effect II. The Photogalvanic Properties of the thionine-iron system", J. Phys. Chem., 8, 560-566.   DOI
38 Raj, S., Edwin, A.M., Pragasam, J., Xavier, F.P. and Nagaraja, K.S. (2000), "Photoelectrochemical studies on [$MnMoO_2(NCS)(Ox)_3(H_2O)_2)Ox=8-quinolinol$]: a novel system for solar energy conversion", Int. J. Energy Res., 24, 1351-1358.   DOI
39 Saini, S.R., Bai, S. and Meena, R.C. (2015), "Studies of surfactant and photosensitizer in photogalvanic cell for solar energy conversion and storage: Methyl violet NaLS and EDTA system", IJAERT, 3(1), 11-20.
40 Sankar, D., Deepa, N., Rajagopal, S. and Karthik, K.M. (2015), "Solar power and desalination plant for copper industry: improvised techniques", Adv. Energy Res., 3(1), 59-70.   DOI   ScienceOn
41 Suresh, E., Pragasam, J., Xavier, F.P. and Nagaraja, K.S. (1999), "Investigation of manganesemolybdenumdiethyledithiocarbamate complex as a potential system for solar energy conversion", Int. J. Energy Res., 23, 229-233.   DOI
42 Tanwar, P. (2015), "The use of surfactant in photogalvanic cells for solar energy conversion and storage: A sodium lauryl sulphate- mannitol- methylene blue system", Energy Sour., 37(12), 1318-1322.   DOI
43 Weijermars, R. (2015), "Sustainable energy system changes", Energy Strat. Rev., 2, 205-208.