• Title/Summary/Keyword: power clamp

Search Result 250, Processing Time 0.038 seconds

An Active Clamp High Step-Up Boost Converter with a Coupled Inductor

  • Luo, Quanming;Zhang, Yang;Sun, Pengju;Zhou, Luowei
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.86-95
    • /
    • 2015
  • An active clamp high step-up boost converter with a coupled inductor is proposed in this paper. In the proposed strategy, a coupled inductor is adopted to achieve a high voltage gain. The clamp circuit is included to achieve the zero-voltage-switching (ZVS) condition for both the main and clamp switches. A rectifier composed of a capacitor and a diode is added to reduce the voltage stress of the output rectifier diode. As a result, diodes with a low reverse-recovery time and forward voltage-drop can be utilized. Since the voltage stresses of the main and clamp switches are far below the output voltage, low-voltage-rated MOSFETs can be adopted to reduce conduction losses. Moreover, the reverse-recovery losses of the diodes are reduced due to the inherent leakage inductance of the coupled inductor. Therefore, high efficiency can be expected. Firstly, the derivation of the proposed converter is given and the operation analysis is described. Then, a steady-state performance analysis of the proposed converter is analyzed in detail. Finally, a 250 W prototype is built to verify the analysis. The measured maximum efficiency of the prototype is 95%.

Characteristics of a Corona between a Wiring Clamp (Dead End Clamp) and a Porcelain Insulator Used in a 154kV Power Receptacle

  • Han, Woon-Ki
    • International Journal of Safety
    • /
    • v.7 no.1
    • /
    • pp.21-25
    • /
    • 2008
  • The occurrence of a corona is that electrical discharge due to the heterogeneity that occurs when an electrical field is concentrated in an electrode due to a cusp formed on said electrode. Wire treatment at the end of a 154kV dead end clamp for end users accelerates the occurrence of corona, which in turn leads to power loss and noise. In this study, the characteristics of the corona which occurs between porcelain insulators and support clamps of overhead lines used in l54kV power receiving facilities for end users were investigated. The corona, which cannot be identified by one common method, was measured utilizing a UV image camera. A risk assessment for fire damage and its status was suggested. The stress distribution of the electrical field by length of bare wire was suggested by means of the finite element method (FEMLAB). As a result, it was found to affect a porcelain insulators. These results can be utilized for the enhancement of clamp installation and safety in power facilities.

Design of a Latchup-Free ESD Power Clamp for Smart Power ICs

  • Park, Jae-Young;Kim, Dong-Jun;Park, Sang-Gyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.3
    • /
    • pp.227-231
    • /
    • 2008
  • A latchup-free design based on the lateral diffused MOS (LDMOS) adopting the "Darlington" approaches was designed. The use of Darlington configuration as the trigger circuit results in the reduction of the size of the circuit when compared to the conventional inverter driven RC-triggered MOSFET ESD power clamp circuits. The proposed clamp was fabricated using a $0.35{\mu}m$ 60V BCD (Bipolar CMOS DMOS) process and the performance of the proposed clamp was successfully verified by TLP (Transmission Line Pulsing) measurements.

A Fuel Cell Generation System with a New Active Clamp Sepic-Flyback Converter

  • Lee, Won-Cheol;Jang, Su-Jin;Kim, Soo-Seok;Lee, Su-Won;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.26-35
    • /
    • 2009
  • A high efficiency active clamp sepic-flyback converter is presented for fuel cell generation systems. The proposed converter is a superposition of a sepic converter mode and. flyback converter mode. The output voltages of the sepic converter mode and flyback converter mode can be regulated by the same PWM technique with constant frequency. By merging the sepic and flyback topologies, they can share the transformer, power MOSFET and active clamp circuit. The result has outstanding advantages over conventional active clamp DC-DC converters: high efficiency, high power density, and component utilization. Simulation results and experimental results are presented to verify the principles of operation for the proposed converter.

Design of Compact and Efficient Interleaved Active Clamp ZVS Forward Converter for Modular Power Processor Distributed Power System

  • Moon, Gun-Woo
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.3
    • /
    • pp.366-372
    • /
    • 1998
  • A high efficiency interleaved active clamp forward converter with self driven synchronous rectifiers for a modular power processor is presented. To simplify the gate drive circuits, N-P MOSFETs coupled active clamp method is used. An efficiency about 90% for the load range of 50-100% is achieved. The details of design for the power stage and current mode control circuit are provided, and also some experimental results are given.

  • PDF

Optimal Design of GaN-FET based High Efficiency and High Power Density Boundary Conduction Mode Active Clamp Flyback Converter (GaN-FET 기반의 고효율 및 고전력밀도 경계전류모드 능동 클램프 플라이백 컨버터 최적설계)

  • Lee, Chang-Min;Gu, Hyun-Su;Ji, Sang-Keun;Ryu, Dong-Kyun;Kang, Jeong-Il;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.259-267
    • /
    • 2019
  • An active clamp flyback (ACF) converter applies a clamp circuit and circulates the energy of leakage inductance to the input side, thereby achieving a zero-voltage switching (ZVS) operation and greatly reducing switching losses. The switching losses are further reduced by applying a gallium nitride field effect transistor (GaN-FET) with excellent switching characteristics, and ZVS operation can be accomplished under light load with boundary conduction mode (BCM) operation. Optimal design is performed on the basis of loss analysis by selecting magnetization inductance based on BCM operation and a clamp capacitor for loss reduction. Therefore, the size of the reactive element can be reduced through high-frequency operation, and a high-efficiency and high-power-density converter can be achieved. This study proposes an optimal design for a high-efficiency and high-power-density BCM ACF converter based on GaN-FETs and verifies it through experimental results of a 65 W-rated prototype.

Model-based Optimal Control Algorithm for the Clamp Switch of Zero-Voltage Switching DC-DC Converter

  • Ahn, Minho;Park, Jin-Hyuk;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.323-333
    • /
    • 2017
  • This paper proposes a model-based optimal control algorithm for the clamp switch of a zero-voltage switching (ZVS) bidirectional DC-DC converter. The bidirectional DC-DC converter (BDC) can accomplish the ZVS operation using the clamp switch. The minimum current for the ZVS operation is maintained, and the inductor current is separated from the input and output voltages by the clamp switch in this topology. The clamp switch can decrease the inductor current ripple, switching loss, and conduction loss of the system. Therefore, the optimal control of the clamp switch is significant to improve the efficiency of the system. This paper proposes a model-based optimal control algorithm using phase shift in a micro-controller unit. The proposed control algorithm is demonstrated by the results of PSIM simulations and an experiment conducted in a 1-kW ZVS BDC system.

A Novel Active Clamp Switching Method To Improve of Efficiency For Photovoltaic MIC (태양광 MIC 시스템의 효율향상을 위한 새로운 Active Clamp 스위칭 기법)

  • Park, Byung-Chul;Park, Ji-Ho;Song, Sung-Geun;Park, Sung-Jun;Shin, Joong-Rin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.477-484
    • /
    • 2013
  • This paper proposes a novel switching method of active clamp snubber for efficiency improvement of PV module integrated converter(MIC) system. Recently, MIC solar system is researched about the efficiency and safety. PV MIC system is used active clamp method of snubber circuit for the price and reliability of the system. But active clamp snubber circuit has the disadvantage that system efficiency is decreased for switch operating time because of heat loss of resonant between snubber capacitor and leakage inductance. To solve this problem, this paper proposes a novel switching method of the active clamp. The proposed method is a technique to reduce power consumption by reducing the resonance of the snubber switch operation time and through simulations and experiments proved the validity.

Metallurgical Failure Analysis on a Suspension Clamp in 154kV Electric Power Transmission Tower

  • Lee, Jaehong;Jung, Nam-gun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.237-240
    • /
    • 2021
  • Failure of a suspension clamp made of hot dip galvanized cast iron in 154kV transmission tower was investigated. Metallurgical analysis of a crack of the clamp was performed using a digital microscope, an optical microscope, and a scanning electron microscope. It was revealed that the crack surface was covered by continuous zinc layer. Distinctive casting skin was found underneath both the outer surface and crack surface. The result showed that pre-existing crack had been formed in the fabrication, and liquid metal embrittlement during hot dip galvanization may assist crack propagation.

A Study on the Design of the High Power Active Clamp ZVS Flyback Converter for Semiconductor Plasma Etching System (반도체 플라즈마 용융장치용 고출력 능동 클램프 ZVS 플라이백 컨버터 설계에 관한 연구)

  • 이우석
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.400-403
    • /
    • 2000
  • This paper deals with the active clamp ZVS flyback converter for semiconductor plasma etching system. The proposed converter has the characteristics of the good power facter low switching noise and efficiency improvement. The characteristics are verified through simulation results. Furthermore the ringing effect due to output capacitance of the main switch can be eliminated by use of active clamp circuit.

  • PDF