• 제목/요약/키워드: power and energy consumption

검색결과 2,020건 처리시간 0.031초

전력선통신(PLC) 방식을 이용한 스마트콘센트와 게이트웨이에 관한 연구 (A Study on the Smart Outlet and Gateway Using Power Line Communication)

  • 박성진;김유진;박인지;김진영;임창균
    • 한국전기전자재료학회논문지
    • /
    • 제33권4호
    • /
    • pp.331-335
    • /
    • 2020
  • In this study, through the accumulated technologies such as real-time monitoring of power consumption using power line communication (PLC) method, power control, and automatic blocking of standby power, to commercialize them, we developed the hardware design, algorithm, protocol and module along with data transmission using PLC. We conducted the study to develop advanced products. We also proposed cloud-based smart outlet products with a novel type of outlet. These products can measure the internal power consumption through the H/W modules and the modules that control the power of household appliances connected to the smart outlets and smart plugs. Subsequently, they transmit the measurements to the energy saving system server via a communication module. This system can control the terminal device connected to the Gateway (G/W) server through a mobile phone. This will allow the customer to check the power consumption of the building at any given time, to turn the terminal on/off, and to maximize the energy efficiency during the construction of new apartments or multi-family housing in an area.

Zigbee 환경에서 그룹 크기 조정에 의한 에너지 효율적인 클러스터링 기법 (An energy efficient clustering scheme by adjusting group size in zigbee environment)

  • 박종일;이경화;신용태
    • 센서학회지
    • /
    • 제19권5호
    • /
    • pp.342-348
    • /
    • 2010
  • The wireless sensor networks have been extensively researched. One of the issues in wireless sensor networks is a developing energy-efficient clustering protocol. Clustering algorithm provides an effective way to extend the lifetime of a wireless sensor networks. In this paper, we proposed an energy efficient clustering scheme by adjusting group size. In sensor network, the power consumption in data transmission between sensor nodes is strongly influenced by the distance of two nodes. And cluster size, that is the number of cluster member nodes, is also effected on energy consumption. Therefore we proposed the clustering scheme for high energy efficiency of entire sensor network by controlling cluster size according to the distance between cluster header and sink.

An Efficient Energy Charging Scheme for Wireless Sensor Networks Using a Mobile Sink Capable of Wireless Power Transmission

  • Park, Kyoung nam;Yoon, Ikjune
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권5호
    • /
    • pp.1-9
    • /
    • 2019
  • In this paper, we propose the algorithms which determine 1) the efficient anchor-node visiting route of mobile sink in terms of energy supply and 2) the efficient energy amount to be charged to each anchor node, by using the information of each anchor node and the mobile sink. Wireless sensor networks (WSNs) using mobile sinks can be deployed in more challenging environments such as those that are isolated or dangerous, and can also achieve a balanced energy consumption among sensors which leads to prolong the network lifetime. Most mobile sinks visit only some anchor nodes which store the data collected by the nearby sensor nodes because of their limited energy. The problem of these schemes is that the lifetime of the anchor nodes can be shorten due to the increased energy consumption, which rapidly reduces the overall lifetime of WSN. This study utilizes a mobile sink capable of wireless power transmission to solve this problem, so a mobile sink can gather data from anchor nodes while charging energy to them. Through the performance verification, it is confirmed that the number of blackout nodes and the amount of collected data are greatly improved regardless of the size of the network.

라즈베리 파이에서 MQTT 프로토콜 이용 시 전력 소모 분석 (Characterizing Power Consumption of MQTT Protocol Usage on Raspberry Pi)

  • 강승우
    • 한국정보통신학회논문지
    • /
    • 제21권12호
    • /
    • pp.2347-2356
    • /
    • 2017
  • 라즈베리 파이는 사물 인터넷 애플리케이션 개발을 위한 범용 하드웨어 플랫폼으로 널리 사용되고 있다. 사물 인터넷에 연결된 각종 기기들이 수행하는 기본적인 작업은 다양한 센서를 이용하여 주변 환경 정보 혹은 기기의 상태 정보를 획득하고 이를 게이트웨이 혹은 원격 서버로 전송하는 것이다. 이를 위해 사물 인터넷 응용 프로토콜인 MQTT가 많이 사용되고 있다. 사물 인터넷 기기는 보통 배터리 파워로 동작하는 경우가 많고 배터리 교체 없이 장시간 동작할 수 있어야 한다. 따라서 센서 데이터 획득 및 전송 작업을 처리하는 데 있어서 에너지 효율성이 매우 중요한 문제 중 하나이다. 에너지 효율적인 사물 인터넷 애플리케이션을 만들기 위해서는 해당 애플리케이션의 전력 소모 특성에 대한 정보가 필수적이다. 하지만 사물 인터넷 기기에서 사물 인터넷 통신 시 전력 소모를 분석하는 연구는 많이 이루어지지 않았다. 본 논문에서는 사물 인터넷 하드웨어 플랫폼으로 널리 사용되는 라즈베리 파이에서 MQTT를 이용하여 데이터를 송수신하는 다양한 상황의 전력 소모를 측정하고 분석한다.

Area-Power Trade-Offs for Flexible Filtering in Green Radios

  • Michael, Navin;Moy, Christophe;Vinod, Achutavarrier Prasad;Palicot, Jacques
    • Journal of Communications and Networks
    • /
    • 제12권2호
    • /
    • pp.158-167
    • /
    • 2010
  • The energy efficiency of wireless infrastructure and terminals has been drawing renewed attention of late, due to their significant environmental cost. Emerging green communication paradigms such as cognitive radios, are also imposing the additional requirement of flexibility. This dual requirement of energy efficiency and flexibility poses new design challenges for implementing radio functional blocks. This paper focuses on the area vs. power trade-offs for the type of channel filters that are required in the digital frontend of a flexible, energy-efficient radio. In traditional CMOS circuits, increased area was traded for reduced dynamic power consumption. With leakage power emerging as the dominant mode of power consumption in nanoscale CMOS, these trade-offs must be revisited due to the strong correlation between area and leakage power. The current work discusses how the increased timing slacks obtained by increasing the parallelism can be exploited for overall power reduction even in nanoscale circuits. In this context the paper introduces the notion of 'area efficiency' and a metric for evaluating it. The proposed metric has also been used to compare the area efficiencies of different classes of time-shared filters.

Heuristic based Energy-aware Resource Allocation by Dynamic Consolidation of Virtual Machines in Cloud Data Center

  • Sabbir Hasan, Md.;Huh, Eui-Nam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권8호
    • /
    • pp.1825-1842
    • /
    • 2013
  • Rapid growth of the IT industry has led to significant energy consumption in the last decade. Data centers swallow an enormous amount of electrical energy and have high operating costs and carbon dioxide excretions. In response to this, the dynamic consolidation of virtual machines (VMs) allows for efficient resource management and reduces power consumption through the live migration of VMs in the hosts. Moreover, each client typically has a service level agreement (SLA), this leads to stipulations in dealing with energy-performance trade-offs, as aggressive consolidation may lead to performance degradation beyond the negotiation. In this paper we propose a heuristic based resource allocation of VM selection and a VM allocation approach that aims to minimize the total energy consumption and operating costs while meeting the client-level SLA. Our experiment results demonstrate significant enhancements in cloud providers' profit and energy savings while improving the SLA at a certain level.

액화공기(Liquid Air) 예냉기반 수소액화공정 성능 해석 및 최적화 (Performance Evaluation and Optimization of Hydrogen Liquefaction Process Using the Liquid Air for Pre-Cooling)

  • 박성호;안준건;류주열;고아름
    • 한국수소및신에너지학회논문집
    • /
    • 제30권6호
    • /
    • pp.490-498
    • /
    • 2019
  • The intermittent electric power supply of renewable energy can have extremely negative effect on power grid, so long-term and large-scale storage for energy released from renewable energy source is required for ensuring a stable supply of electric power. Power to gas which can convert and store the surplus electric power as hydrogen through water electrolysis is being actively studied in response to increasing supply of renewable energy. In this paper, we proposed the novel concept of hydrogen liquefaction process combined with pre-cooling process using the liquid air. It is that hydrogen converted from surplus electric power of renewable energy was liquefied through the hydrogen liquefaction process and vaporization heat of liquid hydrogen was conversely recovered to liquid air from ambient air. Moreover, Comparisons of specific energy consumption (kWh/kg) saved for using the liquid air pre-cooling was quantitatively conducted through the performance analysis. Consequently, about 12% of specific energy consumption of hydrogen liquefaction process was reduced with introducing liquid air for pre-cooling and optimal design point of helium Brayton cycle was identified by sensitivity analysis on change of compression/expansion ratio.

IEEE1451.5 기반의 전원 제어용 무선 DR_인터페이스 장치 개발에 관한 연구 (A Study on the Development of Power Control Wireless Interface Module for Demand_Response using IEEE1451.5)

  • 이정한;최인호;류중경
    • 제어로봇시스템학회논문지
    • /
    • 제15권12호
    • /
    • pp.1192-1196
    • /
    • 2009
  • Recently, the environment contamination problem and energy saving are the social issues. So, the Green IT based Smart Grid was suggested. The smart grid will let rates fluctuate even more dynamically, depending on conditions using energy. Thus, green IT includes the dimensions of environmental sustainability and the economics of energy efficiency. The smart controller in which it is controlled by DR in order to manage the energy consumption by using AMI is needed in order to apply its technology to the real life. In this paper, DR_WTIM of the IEEE1451.5 base which has the DR function for connecting to AMI of the wireless base is developed. By using this apparatus for the power control system, the energy saving effect is shown. Moreover, by using the IEEE1451.5 technology, the problem of energy consumption is solved in order to apply to power controller designed for efficient use energy.

구조단열패널 적용 저에너지주택의 총에너지사용량 평가 (Evaluation on Total Energy Consumption of Low-Energy House with Structural Insulated Panels)

  • 이현주;나환선;조혜진;최성모
    • 복합신소재구조학회 논문집
    • /
    • 제4권2호
    • /
    • pp.15-24
    • /
    • 2013
  • This project is mainly related to evaluation of total energy consumption of low energy house, the exterior envelope of which was wholly composed of structural insulated panels(SIP). The U-value of applied SIP was in the range of 0.189 to $0.269W/m^2{\cdot}K$ and the U-value of pair glass from 0.78 to $1.298W/m^2{\cdot}K$ was applied for window dependent to its function respectively. For comparison of total energy performance, the energy simulation for pilot house was performed to compare with the control house having insulation criteria of Korean building regulation in 2009. Based on simulation of dynamic energy performance, the pilot house saved 48.3% of annual energy consumption while the control house in 2009 consumed as 85.7GJ/y. In case of heating, the result showed that the energy saving ratio amounted to 76.7%. For $CO_2$ emission, the pilot house diminished approximately 35.4% from $6,208.4kgCO_2$ to $4,009.2kgCO_2$. In payback period to early investment, it was analyzed the pilot house took 7.8 years, when the low energy house built by other insulation method with same thermal perfusion took 11.5 years. From this result, it is considered that the SIP is more effective, economic to Green Home application.

가정용 연료전지 시스템의 전기 효율 향상을 위한 연료/공기 이용률 운전 최적화 (Operational Optimization of Anodic/cathodic Utilization for a Residential Power Generation System to Improve System Power Efficiency)

  • 석동훈;김민진;손영준;이진호
    • 한국수소및신에너지학회논문집
    • /
    • 제24권5호
    • /
    • pp.373-385
    • /
    • 2013
  • To obtain higher power efficiency of Residential Power Generation system(RPG), it is needed to operate system on optimized stoichiometric ratios of fuel and air. Stoichiometric ratios of fuel/air are closely related to efficiency of stack, reformer and power consumption of Balance Of Plant(BOP). In this paper, optimizing stoichiometric ratios of fuel/air are conducted through systematic experiments and modeling. Based on fundamental principles and experimental data, constraints are chosen. By implementing these optimum values of stoichiometric ratios, power efficiency of the system could be maximized.