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Abstract 
 

Rapid growth of the IT industry has led to significant energy consumption in the last 

decade. Data centers swallow an enormous amount of electrical energy and have high 

operating costs and carbon dioxide excretions. In response to this, the dynamic consolidation 

of virtual machines (VMs) allows for efficient resource management and reduces power 

consumption through the live migration of VMs in the hosts. Moreover, each client typically 

has a service level agreement (SLA), this leads to stipulations in dealing with 

energy-performance trade-offs, as aggressive consolidation may lead to performance 

degradation beyond the negotiation. In this paper we propose a heuristic based resource 

allocation of VM selection and a VM allocation approach that aims to minimize the total 

energy consumption and operating costs while meeting the client-level SLA. Our experiment 

results demonstrate significant enhancements in cloud providers’ profit and energy savings 

while improving the SLA at a certain level. 
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1. Introduction 

Cloud Computing has received significant attention in recent times. The hype has largely 

been created and responded by companies such as Amazon, IBM, Google, Yahoo!, Microsoft, 

Sun, NASA and RackSpace by making their own cloud platforms for consumers and 

enterprises to access cloud resources through these services. The rapid development of 

virtualization technology, including the advantages of isolation, consolidation and 

multiplexing of resources, became a key role to deploy in modern data centers [1]. Due to 

virtualization, numerous tasks are seen as a single entity in a virtual machine. However, 

virtualization fetches another abstraction layer that impedes conventional energy and resource 

management techniques from performing proficiently [2]. Virtualization opens new 

capabilities such as live migration [3], which has attracted substantial attention in recent years 

to respond to the challenges of cloud computing. It does this by providing load balancing, 

power efficiency, and transparent infrastructure maintenance to the virtual machines, which 

requires new management logic. 

The problem with data centers is high energy consumption, which has risen by 56% from 

2005 to 2010, and in 2010 accounted for 1.15% to 1.5% of global electricity use [4]. In 

addition, high energy ingestion by the infrastructure leads to substantial carbon dioxide ( 2CO ) 

emissions causative to the greenhouse effect [5]. The energy consumption can be firmed by 

the resource management system deployed in the infrastructure and the efficiency of 

applications running in the system. To improve the utilization of data center resources, virtual 

machine consolidation has been shown to be efficient [7][8][9][10][11][12]. This process 

leverages live migrations of VMs with changing workloads in the physical host to reduce the 

number of physical hosts or servers. To eliminate the static power, idle servers are switched to 

sleep mode to reduce the energy consumption; idle hosts can be reactivated when the resource 

demand increases. However, infrastructure providers often end up over-provisioning 

resources to maximize the quality of service; this results in high energy consumption, poor 

resource management and large operational costs. QoS requirements can be formalized in a 

service level agreement that serves as the foundation for the expected level of service between 

the cloud consumer and the service or cloud provider. The purpose of optimal resource 

provisioning through VM consolidation is to make an energy-performance trade-off rather 

than only minimizing the power consumption. Optimal resource allocation and management is 

challenging due to the diversity present in the clients’ applications and the dynamic workloads 

that have to be processed by hosts in the data center. 

 

In our work, we articulate the VM resource allocation problem into a multidimensional 

bin-packing problem, which is NP-complete [13]. Similar to this problem, we considered VMs 

as items, dimensions as their capacity and hosts as bins. Our estimation on overload detection 

provides more dynamicity to resource allocation techniques and adopts a different 

environment that is independent of the workload. Our proposed technique is more robust in 

regards to the problem of overload detection; this reduces the number of unnecessary 

migrations of virtual machines and decreases power consumption and performance 

degradation. Specifically our work aims to: 

 

 Define an architectural framework for optimal resource allocation and 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 8, Aug. 2013                                 1827 

Copyright ⓒ 2013 KSII 

management. 

 Examine heuristic based energy-aware resource provisioning without 

violating the negotiated SLA. 

 Provide dynamicity and self-managing changes for allocation of resources for 

dynamic and unpredictable workloads. 

 Develop efficient algorithms for VM consolidation and mapping to hosts to 

reduce energy consumption and operational cost. 

 

Several experiments have been carried out with real life workloads to validate the efficiency 

of our proposed VM resource allocation policy and algorithm. We have compared our results 

with several researchers ([14][15]) and found outstanding improvements including reduced 

power consumption up to 36.37%, improvement of the SLA up to 15% and a 46.25% 

reduction of operational costs. The remainder of this paper is organized as follows: Section 2 

describes some work related to our research, Section 3 defines an architectural framework for 

optimal resource allocation and management, our heuristic based approach is proposed in 

Section 4, Section 5 has the performance evaluation and analysis, and Section 6 concludes the 

paper with our future research issues and conclusion. 

 

2. Related Work 

Our work is based on the dynamic consolidation of virtual machines and retaining a strict 

service level agreement to consumers while considering the minimization of energy 

consumption. There are several research groups in both academia and industry working on 

energy aware resource allocation and management by performing static and dynamic 

consolidation of VMs and servers.  

Bobroff et al. [16] proposed and evaluated a dynamic server consolidation to reduce the 

amount of physical capacity while maintaining low SLA violation. The algorithm uses 

historical data for demand forecasting to periodically minimize the number of physical servers. 

In contrast, we consider the reduction of energy consumption and the cloud provider’s SLA 

penalties while confirming a lesser number of VM migrations and physical servers used 

during the whole execution period. Cardosa et al. [17] proposed running heterogeneous 

applications as a solution for VM placement and power-efficient consolidation of VMs in 

modern data centers. They adopted min, max, and share parameters of XEN and VMware, 

these represent the utilization limit of upper and lower CPU allocation and sharing of the same 

resources by different VMs. They also considered a priority based approach for the peak load 

of the enterprise environment. As a result, it does not support strict SLA and the VM allocation 

is static. 

Carrera et al. [18] investigated the performance degradation in multi-tier web applications 

hosted on a cloud.  They designed and implemented algorithms for automatic bottleneck 

detection and resolution to make to make resource management dynamic and SLA-driven. 

However their investigation is not suitable for scenarios where power consumption should be 

reduced and cost optimized. Verma et al. [19] described a power aware application placement 

framework in which at each time frame the placement of VMs is optimized to minimize the 

power consumption and maximize the performance at certain levels. The main difference 

between his work and ours is that our proposed algorithm does not violate strict SLA 
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requirements when the workload is varied and unpredictable. 

Stilwell et al. [20] proposed a formulation of the resource allocation problem in a shared 

hosting platform for static workloads with servers that provide multiple types of resources. 

Their algorithm runs faster in large systems and fulfills QoS requirements but it lacks 

dynamicity when the workload is unpredictable and dynamic. Like Stilwell other researchers 

([21] [22]) also studied VM resource management techniques to maintain QoS requirements 

when the workload is static in cloud computing. Wood et al. [23] developed the Sandpiper 

System that monitors and detects hotspots and reconfigures VMs when necessary. In order to 

choose which VMs to migrate, their system sorts them using volume-size-ratio, which is a 

metric based on CPU, network and memory loads; whereas we consider both the size of the 

VM and the migration time required to maintain a strict SLA.  

Ferreto et al. [15] proposed server consolidation with migration control to reduce the 

number of migrations of VMs with minimal penalty in the number of physical servers. They 

constructed an LP formulation and heuristics to control VM migration, which prioritizes 

virtual machines with a steady capacity. However, our experimental results show greater 

improvement in power reduction and cost optimization than their approach. Anton et al. [14] 

designed and implemented an online algorithm and adaptive heuristic based approach for an 

energy efficient data center. They constructed several approaches to find the trade off point 

where power consumption is decreased but a strong SLA is maintained. In contrast to their 

approach, our algorithms include host utilization, power consumption, and migration time of 

VMs. Further modification of their approach shows better results in terms of cost optimization, 

and reduced power consumption and SLA violations. Our estimator for host overload 

detection provides better consolidation of VMs as it reduces the number of unnecessary VM 

migrations. 

3. Proposed Framework 

Fig. 1 depicts our proposed system architecture. Our only consideration is infrastructure as a 

service (IaaS).To maintain the scalability, have efficient use of resources and provide on 

demand service to meet the service level agreement we consider several modules that can 

provide better monitoring and on demand provisioning of resources. 

Over-provisioning of resources can fulfill the service level agreement in greater extent but 

from the cloud provider’s view it is considered non-profitable as it can increase the resource 

overhead of the system. A demand estimator module estimates the amount of resources needed 

to serve one application’s demand based on the feedback from an available capacity estimator 

and the overload of the system infrastructure. The demand estimator plays an important role as 

the decision maker to serve applications with proper SLAs. If overload is detected, the demand 

estimator can also report the recovery or migration of VMs from the serving host to another 

host. On the other hand, a workload profiler allocates resources depending on the variability 

and the characteristics of different types of application workloads via an executor. The 

resource allocator allocates the resources for the application or for the whole session of the 

task; this is based on the estimation from the demand estimator and the characteristics of the 

workload from the workload profiler. The resource allocator is loosely coupled with the 

system so that addition and removal of resources can be done in run time. Usually data centers 

receives various types of workloads from various geographic locations, so synchronization 

between VMs, physical hosts and network connection is more important these days. For this 

reason we illustrate registration and synchronization, session manager and decommissioning 
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of the session for a user or period of time in the virtual machine manager (VMM). The jobs 

scheduler/queue manager can be designed as either the cloud provider’s or user’s perspective 

for different kinds of workloads or jobs (e.g., arrival rate, polynomial distribution, and round 

robin). Therefore, in order to correctly allocate resources and serve the service request with a 

strict SLA, an efficient, cost effective and optimal VM resource allocation algorithm is 

necessary. 
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4. Heuristics for Dynamic VM Consolidation 

Based on an analysis of historical data of the resource usage by VMs, we propose several 

heuristics for dynamic consolidation of VMs. Our heuristics include: (1) Determining the 

dynamic upper utilization threshold for overload detection, (2) Selecting suitable VMs for 

migration from an overloaded host, (3) Finding new placements for the VM selected for 

migration from the overloaded host, and (4) Determining a host considered as under loaded 

and migrating all of the VMs from the under loaded host. 

4.1 Detection of Host Overloading 

Some of the researcher’s proposed heuristic for determining the time to migrate a VM from a 

host is based on a utilization threshold [21] [24]. Normally their idea is based on setting upper 

and lower utilization thresholds for hosts and keeping the total utilization of the CPU by all the 

VMs between these thresholds. In [21], they set 25% and 75% of the total utilization as the 

lower and upper utilization thresholds, respectively. In contrast to this, Anton et al. [24] 

experimented with different values for the lower and upper thresholds and found different 

levels of power consumption based on increasing and decreasing the values. Moreover, if the 

host utilization falls under the lower utilization thresholds, all VMs have to be migrated from 

the host; the host has to be in the sleep mode in order to obliterate the idle energy consumption. 

To maintain a strong SLA, the opposite occurs when the host gets overloaded. 

In the case of dynamic, unpredictable workloads and different types of applications that 

share the same physical resources, fixed values for the utilization threshold are not suitable. 

Statistical analysis of historical data techniques plays an important role in adjusting the 

threshold values based on the behavior of the workload pattern. For classic parametric tests to 

produce accurate results, the assumptions underlying them (e.g., normality and 

homoscedasticity) must be satisfied. These assumptions are rarely met while analyzing real 

data. To get an accurate computation of P values, effect sizes and confidence intervals, robust 

methods are more effective than classical methods [25]. Anton et al. [14] provided four robust 

statistical methods that can be used as an estimator to design the threshold value. Among them, 

MAD is a more robust estimator of scale than the sample variance or standard deviation. We 

propose as an alternative to MAD, a more robust estimator that can be used as an initial or 

ancillary scale. It estimates the same way but is more efficient and not imbalanced towards 

symmetric distribution [26]. The estimator can be expressed for univariate data sets of m-

1 2, ,...., nX X X : 

                                   { | |}n i i jE cmed med X X                                                        (1) 

                                   1 .u nT s E  ,       where, s R , 0s                                            (2) 

For each i  we compute the median of {| |; 1,....., }i jX X j n  . This yields n number, 

the median of which gives our final estimation nE  from equation (1) (The factor C  is for 

consistency). We define the upper threshold and introduce a safety parameter in (2). We can 

adjust the safety of the method by controlling the parameter. The higher the value of s , the 

lower the level of the SLA violation, but higher the energy consumption caused by 

consolidation. 

 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 8, Aug. 2013                                 1831 

Copyright ⓒ 2013 KSII 

4.2 VM Selection 

Our policy selects and migrates a VM to lower the CPU utilization if the CPU utilization of a 

host goes beyond the upper utilization threshold. We consider both the VM’s CPU utilization 

and migration time when determining which VM has to be migrated. The migration time can 

be estimated as the amount of memory used by the VM divided by the bandwidth availability 

of that particular host [14].  

 

Algorithm 1: VM Selection Algorithm 

  Input: hostList  Output: migrationList 

foreach h in hostList do 

           vmList ← h.getVmList ( ) 

           vmList.sortDecreasingUtilization ( ) 

           hUtil ← h.getUtil ( ) 

           bestFitUtil ← MAX 

        while hUtil > THRESH_UP do 

             foreach vm in vmList do 

                  if vm.getUtil ( ) > hUtil – THRESH_UP then 

                       t ← vm.getUtil ( ) – hUtil + THRESH_UP 

                       r ← vm.getRam ( )  

                       c ← sqrt (sqr (t) + sqr (r) ) 

                       if c < bestFitUtil then 

                             bestFitUtil ← c 

                             bestFitVm ← vm 

                      end 

                  else 

 

                       if  bestFitUtil = MAX then 

                           bestFitVm ← vm 

                       break 

                 end 

           end 

       end 

            hUtill ← hUtil-bestFitVm.getUtil ( ) 

            migrationList.add(bestFitVm) 

            vmList.remove(bestFitVm) 

return migrationList 

 

Let jM be a set of VMs currently allocated to the host j . We calculate the value of c by 

taking the square of both the utilization and the amount of RAM used by the VMs in Host j

and then taking the root of the value. From the result we consider the lowest value and, if 

needed, round the value to get the desired VM to be migrated. 

                                      
2 2{ ( )} { ( )}k j u jc u M RAM M                                             (3) 

                                      0 s ac c  ,      , ,s ac c c c s a                                            (4) 

                                  ( ) | |k j uu s u T  ,       js M                                                         (5) 
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( ) ( )u u

j j

RAM s RAM a

SBw SBw
 ,     ,,j js M a M s a                              (6) 

Where ( )ku s is the fraction of CPU utilization by the VM; ju  is the current host CPU 

utilization; 
uT is the upper utilization threshold; ( )uRAM s and ( )uRAM a are the amount of 

RAM currently utilized by the VMs  s  and a . 

The pseudo-code of the VM selection for the over-utilization case is presented in Algorithm 

1. The algorithm sorts the VMs in decreasing order then finds a VM in the list based on the 

decision and returns the migration list. The algorithm selects a VM if it satisfies the condition. 

It first sorts those VMs that have higher CPU utilization than the difference between the 

current host utilization and the upper utilization threshold value. Then it calculates the 

migration time for all VMs and gets the desired VM by taking the minimum value from      

equation (3). If there is no such VM, it will select the best utilized VM for migration from the 

host. 

4.3 VM Placement 

The problems with VM allocation can be divided in two ways: the admission of new 

requirements for VM provisioning and enlisting the VMs in the host, and the optimization of 

current VM allocation. The first can be seen as a bin packing problem with variable bin size 

and prices, where bins represent the physical hosts, bin sizes are the available CPU capacity 

and bin processes are the energy consumption. We solve the first problem by using the best fit 

decreasing algorithm that is shown to use no more than bins 11
. 1

9
OPT   [27].  

Algorithm 2:    VM Allocation Algorithm 

Input: bestFitVm, vmList, hostList  Output: Allocation of VM’s 

foreach bestFitVm in vmList do 

           minPower ← Max 

           allocatedHost ← Null 

           maxHost ← MIN 

           mindiagonal ← MAX 

      foreach host in hostList  do 

          if bestVmUtil() < THRESH_UP – hUtil() then 

               powerdiff ← powerAfterAllocation – getPower (host) 

               hUtil ← getUtilizationOfCpu (host) 

              A← sqrt (sqr (powerdiff) + sqr (hUtil)) 

               if    A < mindiagonal then 

                     allocatedHost ← A 

              end    

           else 

              if hUtil > maxHost 

                 allocatedHost ← host 

              end 

           end 

     end 

 

      if   allocatedHost ≠ NULL then 

           allocate vm to allocatedHost 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 8, Aug. 2013                                 1833 

Copyright ⓒ 2013 KSII 

 

 

 

 

 

However, to solve the second problem we consider power consumption and CPU utilization of 

hosts. The pseudo-code for the VM placement is presented in Algorithm 2. We calculate the 

other available host’s current CPU utilization and increase of power consumption if the 

selected VM had been migrated. By using  2 2x y , we indicate the tradeoff point of the CPU 

utilization and increased power consumption of the hosts and find a suitable host for the VM. 

Otherwise it will find a host in which the utilization is calculated greater so that the host 

doesn’t get overloaded if the VM is migrated to it. 

4.4 Detection of Host Under Loading 

We propose a very simple approach for host under load detection to reduce the power 

consumption and the number of running physical hosts in a data center. Our approach is to find 

the hosts with less CPU utilized compared to other hosts and try to move the VMs to other 

hosts until these hosts get overloaded. If this can be achieved then we set VMs for migration 

from the host and put the host in shutdown mode to reduce energy consumption, as, on average, 

an idle server consumes approximately 70% of the power consumed by a server running at the 

full CPU speed [24]. This is done iteratively for all hosts that are not considered overloaded. 

This approach certainly reduces the number of hosts required to accomplish the tasks shown in 

the experimental results. 

4.5 SLA Metrics and Cost Function for Cloud Providers 

Maintaining a strong SLA and meeting QoS requirements is enormously important for a cloud 

computing environment. Overprovisioning of resources to meet the target SLA can increase 

the power consumption, as energy-aware resource management is highly important these days. 

QoS requirements can be governed by service response time or throughput, and these can be 

varied for different applications. However for IaaS, workload independent metrics should be 

considered to calculate the SLA percentage or violation. For measuring the SLA violation in 

an IaaS environment we consider two metrics: the percentage of time an active host has 

experienced 100% CPU utilization and performance degradation due to VM migration from 

one host to another. These same metrics have been considered by past researchers [14], but our 

result shows better improvement in maintaining the SLA when considering these two metrics. 

We consider SLAs as delivered when 100% of an application’s requirements have been served 

by a VM. However, when a host experiences 100% CPU utilization, the performance of 

applications degrades due to a lack of capacity. 

                          SLA time per active host 
1

1 N
sk

k ak

X

N X

                                                (7) 

                        Performance degradation due to migration 
1

1 M
dl

l al

P

M P

                         (8) 

Where N and M are the number of hosts and VMs respectively; skX is the total time when 

     end 

end 

return allocation 
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host k  has experienced 100% CPU utilization and caused  a SLA violation; 
akX  is the total 

time the host was active; 
dlP  is the approximation of performance degradation due to 

migration of VM l (we consider it 10%) [14]; 
alP  is the total CPU capacity requested by VM 

l during its epoch. 

 

Based on the above two metrics we formulate a cost function to calculate the total cost that 

one cloud provider has to pay for our scenario. We consider the power consumption, number 

of VM migrations and number of active hosts during the execution of tasks and the SLA 

violations to formulate the cost function. 

 

.pC E  + 
1

( . )
M

k i mj

i

C P P


  + 
1

( . )
N

l i nj

i

C R R


  + 
1 1

1 1
( . )

N M
sk dl

k lak al

X P

N X M P 

     .uC v  +          (9) 

Where pC , kC , 
lC  are the costs for energy consumption, for the active host during task 

execution time and for VM migration, respectively; uC  is the pay per use of the user or 

customer and v  is the factor for an SLA penalty; iP  is the number of hosts shutdown and  mjP  

is the mean time before the host shutdown; 
iR  and  njR  corresponds to the number of VM 

migrations and mean time before a Vm migrates to the other host;  is the co-efficient that 

includes the costs of memory, RAM, cooling, space, server racks, etc. In our experiments we 

haven’t considered memory and RAM when calculating power consumption as the CPU holds 

the major portion of this. 

5. Performance Evaluation 

5.1 Test Bed Setup 

We evaluate our proposed algorithm in the CloudSim toolkit. CloudSim is an extensible 

simulation toolkit that enables modeling and simulation of cloud computing systems and an 

application provisioning system created by CLOUDS Lab, University of Melbourne [28]. We 

chose this as it is enormously difficult to conduct large-scale experiments in real infrastructure. 

Eight hundred heterogeneous physical nodes are used to do the experiment. The server model 

is HP ProLiant ML110 G4 (Intel Xeon 3040, 2 cores 1860 MHz, 4 GB) and HP ProLiant 

ML110 G5 (Intel Xeon 3075, 2 cores 2660 MHz, 4 GB). For our simulation we considered 

MIPS ratings (instead of MHz) for the two servers as 1860 MIPS and 2660 MIPS, respectively. 

Four types of VMs were used as the High-CPU medium instance (2500 MIPS, 0.85 GB), Extra 

Large instance (2000 MIPS, 3.75 GB) Small instance (1000 MIPS, 1.7 GB) and Micro 

Instance (500 MIPS, 613 MB). In our experiments, we extended CloudSim for simulating the 

function to dynamic consolidation of VMs. The PowerVmAllocationPolicyMigrationAbstract 

and PowerVmSelectionMinimumMigrationTime classes are modified according to our 

proposed algorithm. We have conducted experiments with real life data provided by the 

CoMon project, a monitoring infrastructure for PlanetLab [29]. We have used CPU utilization 

data from more than a thousand VMs from different geographic places. We have traced 

random workload from four days in March 2011; the average CPU load was below 60% and 

the workload was assigned to VMs randomly. We compared local regression- minimizing 

migration time (LR-MMT), best fit decreasing (BFD), and first fit decreasing (FFD) to show 
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the improvement of our results. The LR-MMT method was so far the best approach in this 

area. 
Table 1. Summary of test bed characteristics 

Simulator CloudSim 

Number of Host 800 

Host features 
Intel Xeon 3040, 2 cores 1860 MHz, 4 GB, Intel     

Xeon 3075,    2 cores 2660 MHz, 4 GB 

Number of VMs 1052, 898, 1061, 1516 

VMs Feature Amazon EC2 instance type [30] 

Workload Data CPU Utilization From PlanetLab for four days 

Control Time 5 minutes 

Power Consumption Cost for Provider $1.5 

Active Host Cost for Provider $.25 

VM Migration Cost for Provider $.15 

 

(a)                                                                  (b) 

 

(b)                                                                    (d) 

                           
Fig. 2. Workload variation from day 1 to 4. 
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Table 2. Summary of test bed characteristics 

Algorithm 
Power Consumption 

(Kwh) 

Number of VM 

Migration 

SLA 

violation 

(
510 ) 

Operational 

Cost 

($/Hour) 

LR-MMT 143.395 23027 4.00 552.571 

BFD 100.375 18417 3.124 350.41 

FFD 103.445 20887 3.245 381.89 

Proposed 

Algorithm 
96.56 10445 3.37 297.02 

5.1 Power Consumption 

Our proposed algorithms show significant reduction of power consumption when compared 

with Anton et al. [14] algorithm and solution proposed by [15]. When considering the VM 

placement from the overloaded host to the other host, our algorithm had better results than 

others for both the increase of power consumption and CPU utilization. There was 

approximately a 36.37% power consumption reduction compared to LR-MMT[14], and 

reductions of 9.21% and 11.76% compared to traditional BFD and FFD algorithms, 

respectively.  

 
(a)                                                     (c) 

                                  
(b)                                                     (d) 

Fig. 3. (a) Number of VM migrations, (b) SLA violation comparison, (c) Operational cost per hour, and  
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(d) Power consumption. 

Recent [31][32] studies have shown that the application of DVFS on the CPU results in 

almost linear power-to-frequency relationship for a server. Moreover, these studies show that 

on average an idle server consumes approximately 70% of the power consumed by the server 

running at the full CPU speed. We mentioned two types of server model which were used in 

our simulation named HP ProLiant ML110 G4 (Intel Xeon 3040, 2 cores  1860 MHz, 4 GB) 

and HP ProLiant ML110 G5 (Intel Xeon 3075, 2 cores  2660 MHz, 4 GB). Power consumption 

in watts by those servers is given below [14]. 

 
Table 3. Power consumption by the selected servers at different load levels in Watts 

Server 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

HP ProLiant 

G4 

86 89.4 92.6 96 99.5 102 106 108 112 114 117 

HP ProLiant 

G5 

93.7 97 101 105 110 116 121 125 129 133 135 

So from the above table, it can be shown that power consumption increases only 31-40 watts 

for “No CPU load” to “Full CPU load server”. If we could shut down these least load servers, 

enormous amount of energy can be saved and that was our main motivation in this paper. 

Comparing to the above scenario, VM migration consumes negligible energy (provided that an 

idle server consumes 70% of the power consumed by full CPU load server), but we have not 

neglected this factor rather we considered 10% of CPU utilization during all migrations of the 

VM occurs in the servers that results more energy consumption. Moreover, CPU utilization 

needed for VM migration was considered while calculating the SLA violation. 

5.3 SLA Violation 

In order to compare the efficiency we have also evaluated performance metrics such as SLA 

violations with other researchers’ proposed algorithms. Our result not only shows a better 

maintaining SLA, rather it demonstrates rigorous reduction in power consumption while 

maintaining SLA violations at a manageable level. From the experiment we calculated the 

amount of time an active host experienced 100% and caused performance degradation for the 

application in this epoch, and the number of VM migrations that occurred due to VM 

consolidation. We did not do aggressive consolidation; otherwise this would have resulted in 

an increase in the SLA violations. By dynamically selecting the upper threshold and efficiently 

placing the VMs in the hosts, a decreased number of migrations and higher rate of maintaining 

the SLA occurs. Fig. 3 (b) shows a 15% improvement of maintaining the SLA compared to the 

LR-MMT algorithm and a degradation of 6.1% and 3% relating to BFD and FFD, respectively, 

while keeping energy consumption at a very decent level. Our algorithm makes a tradeoff 

between user or customer satisfaction and power consumption; this enormously increases the 

chance of the cloud provider having profit. 

5.4 Cost Optimization 

Fig. 3 (c) illustrates the operational cost per hour by our proposed approach compared to other 

algorithms. The analysis shows that the operational cost reduced to 46.25%, 15.24% and 22.3% 
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compared to LR-MMT, BFD and FFD, respectively. This happens due to decreased power 

consumption, a low number of VM migrations and an active host during task execution. The 

SLA plays an important role when constructing the cost function as an increase in violations of 

the SLA causes SLA penalty that results in more operational cost. 

 
Table 4. Comparisons of the estimation function of overload detection. 

 Workload 1 Workload 2 Workload 3 Workload 4 

Metrics 

MAD-

MMT 

Proposed MAD-

MMT 

Proposed MAD-

MMT 

Proposed MAD-

MMT 

Propose

d 

Energy 

Consumption 

(Kwh) 

184.88 120.97 141.28 91.03 162.72 102.09 197.33 123.24 

Number of 

VM 

Migrations 

26292 12094 21111 9221 23314 10868 28628 15241 

SLA (
510 ) 3.31 2.86 3.78 2.67 3.86 3.88 3.02 3.97 

Number of 

Host 

Shutdowns 

5759 989 4663 955 5123 1052 5927 1040 

SLA Time per 

active Host 

5.03% 4.69% 5.23% 4.51% 5.23% 5.14% 5.04% 5.88% 

  

5.5 Estimation Function 

Table 3 illustrates the impact on host overload detection of our estimation function nE . We 

compared our proposed scheme with the MAD-MMT (median absolute 

deviation-minimization of migration) approach [14] where they used the median absolute 

deviation from the data sets of 5 minutes to estimate the next 5 minute upper utilization 

threshold for particular host. We used a modified median absolute deviation rather their 

approach.  The results show significant reduction of power consumption and unnecessary VM 

migration; negligible performance degradation occurs for workload types 3 and 4. Our 

approach adapts well with different workload scenarios and can be implemented in large scale 

data centers for cloud computing environments. 

 

6. Conclusion 

Energy consumption is a critical issue for large-scale data centers which crowd thousands of 

hosts and cooling equipment. Additionally, cloud providers’ profit and providing a negotiated 

SLA is becoming more concerning these days. Virtualization enables all of these possibilities 

for the modern world by providing consolidation and dynamism. However, it requires new 

policies for managing the new virtualization proficiencies. 
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    Our approach in this study reduces a significant amount of energy consumption and 

operational costs under certain QoS requirements. We use the CloudSim simulator to justify 

our approach compared with other researchers using a real-life workload. Analysis shows a 

reduction of power consumption up to 36.37%, an improvement of the SLA up to 15% and an 

increase in the cloud providers’ profit to 46.25%. However, in this proposed approach we have 

not accounted for network considerations such as bandwidth, parallelization, or co-location. 

As data centers from different geographic places serve user requests, network condition and 

latency can be a major concern for research. Our future work will focus on extending our 

current approach with different network topologies in data centers.  
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