• Title/Summary/Keyword: power MOSFET

Search Result 635, Processing Time 0.035 seconds

Design of Gate Driver Power Supply for 3-Phase Inverter Using SiC MOSFET (SiC MOSFET를 사용한 3상 인버터용 게이트 드라이버 전원 설계)

  • Lee, Sangyong;Chung, Se-Kyo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.429-436
    • /
    • 2021
  • The design of a gate driver power supply for a three-phase inverter using a silicon carbide (SiC) MOSFET. The requirements for the power supply circuit of the gate driver for the SiC MOSFET are investigated, and a flyback converter using multiple transformers is used to make the four isolated power supplies. The proposed method has the advantage of easily constructing the power supply circuit in a limited space as compared with a multi-output flyback converter using a single core. The power supply circuit for the three-phase SiC MOSFET inverter for driving an AC motor is designed and implemented. The operation and validity of the implemented circuit are verified through simulations and experiments.

The Characteristics of Power MOSFET (전력용 MOSFET의 특성)

  • Bae, Jin-Yong;Kim, Yong;Kwon, Soon-Do;Cho, Kyu-Man;Eom, Tae-Min
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.131-135
    • /
    • 2009
  • This paper reviews the characteristics of Power MOSFET device technology that are leading to improvements in power loss for power electronic system. The silicon bipolar power transistor has been displaced by silicon power MOSFET's in low and high voltage system. The power electronic technology requires the marriage of power device technology with MOS-gated device and bipolar analog circuits.

  • PDF

Reliability Characteristics of RF Power Amplifier with MOSFET Degradation (MOSFET의 특성변화에 따른RF 전력증폭기의 신뢰성 특성 분석)

  • Choi, Jin-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.1
    • /
    • pp.83-88
    • /
    • 2007
  • The reliability characteristics of class-E RF power amplifier are studied, based on the degradation of MOSFET electrical characteristics. The class-E power amplifier operates as a switch mode operation to achieve high efficiency. This operation leads to high voltage stress when MOSFET switch is turned-off. The increase in threshold voltage and decrease in nobility caused by high voltage stress leads to a drop in the drain current. In the class-E power amplifier the effects caused by the degradation of MOSFET drain current is a drop of the power efficiency and output power. But the small inductor in the class-E load network allows the reliability to be improved. After $10^{7}\;sec$. the drain current decreases 46.3% and the PAE(Power Added Efficiency) decreases from 58% to 36% when the load inductor is 1mH. But when the load inductor is 1nH the drain current decreases 8.89% and the PAE decreases from 59% to 55%.

A High Efficiency DC-DC Converter Using IGBT-MOSFET Parallel Switches (IGBT-MOSFET 병렬 스위치를 이용한 고효율 직류-직류 변환기)

  • 장동렬;서영민;홍순찬;윤덕용;황용하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.152-158
    • /
    • 1999
  • Due to high power ratings and low conduction loss, the TGBT has become more attractive in switching power supplies. However, its lower turn-on and turn-off characteristics than those of MOSFET cause severe switching loss and s switching frequency limitation. This paper proposes 2.4kW. 48V. high efficiency half-bridge DC-DC converter using p paralleled TGBT-MOSFET switch concept to use the merits of TGBTs and MOSFETs. Tn parallel switches. each of I TGBT and MOSFET plays its part during on-periods and switching instants. The switching loss is analyzed by l linearized modelling and the operation of the converter are investigated by simulation results.

  • PDF

Trench Power MOSFET using Separate Gate Technique for Reducing Gate Charge (Gate 전하를 감소시키기 위해 Separate Gate Technique을 이용한 Trench Power MOSFET)

  • Cho, Doohyung;Kim, Kwangsoo
    • Journal of IKEEE
    • /
    • v.16 no.4
    • /
    • pp.283-289
    • /
    • 2012
  • In this paper, We proposed Separate Gate Technique(SGT) to improve the switching characteristics of Trench power MOSFET. Low gate-to-drain 전하 (Miller 전하 : Qgd) has to be achieved to improve the switching characteristics of Trench power MOSFET. A thin poly-silicon deposition is processed to form side wall which is used as gate and thus, it has thinner gate compared to the gate of conventional Trench MOSFET. The reduction of the overlapped area between the gate and the drain decreases the overlapped charge, and the performance of the proposed device is compared to the conventional Trench MOSFET using Silvaco T-CAD. Ciss(input capacitance : Cgs+Cgd), Coss(output capacitance : Cgd+Cds) and Crss(reverse recovery capacitance : Cgd) are reduced to 14.3%, 23% and 30% respectively. To confirm the reduction effect of capacitance, the characteristics of inverter circuit is comprised. Consequently, the reverse recovery time is reduced by 28%. The proposed device can be fabricated with convetional processes without any electrical property degradation compare to conventional device.

The Characteristics and Technical Trends of Power MOSFET (전력용 MOSFET의 특성 및 기술동향)

  • Bae, Jin-Yong;Kim, Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1363-1374
    • /
    • 2009
  • This paper reviews the characteristics and technical trends in Power MOSFET technology that are leading to improvements in power loss for power electronic system. The silicon bipolar power transistor has been displaced by silicon power MOSFET's in low and high voltage system. The power electronic technology requires the marriage of power device technology with MOS-gated device and bipolar analog circuits. The technology challenges involved in combining power handling capability with finger gate, trench array, super junction structure, and SiC transistor are described, together with examples of solutions for telecommunications, motor control, and switch mode power supplies.

Design and Analysis for Parallel Operation of Power MOSFETs Using SPICE (SPICE를 이용한 MOSFET의 병렬운전 특성해석 및 설계)

  • 김윤호;윤병도;강영록
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.2
    • /
    • pp.251-258
    • /
    • 1994
  • To apply the Power MOSFET to the high powerd circuits, the parallel operation of the Power MOSFET must be considered because of their low power rating. This means, in practical applications, design methods for the parallel operations are required. However, it is very difficult to investigate the problem of parallel operations by directly changing the internal parameters of the MOSFET. Thus, in this paper, the effects of internal parameters for the parallel operation are investigated using SPICE program which is often used and known that the program is very reliable. The investigation results show that while the gate resistance and gate capacitances are the parameters which affect to the dynamic switching operations, the drain and source resistances are the parameters which affect to the steady-state current unbalances. Through this investigation, the design methods for the parallel operation of the MOSFET are suggested, which, in turn, contributes to the practical use of Power MOSFETs.

  • PDF

Study on the Design of Power MOSFET for Smart LED Driver ICs Package (스마트 LED Driver ICs 패키지용 700 V급 Power MOSFET의 설계 최적화에 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.2
    • /
    • pp.75-78
    • /
    • 2016
  • This research was designed 700 level power MOSFET for smart LED driver ICs package. And we analyzed electrical characteristics of the power MOSFET as like breakdown voltage, on-resistance and threshold voltage. Because this research is important optimal design for smart LED ICs package, we designed power MOSFET with design and process parameter. As a result of this research, we obtained $60{\mu}m$ N-drift layer depth, 791.29 V breakdown voltage, $0.248{\Omega}{\cdot}cm^2$ on resistance and 3.495 V threshold voltage. We will use effectively this device for smart LED driver ICs package.

50V Power MOSFET with Improved Reverse Recovery Characteristics Using an Integrated Schottky Body Diode (Schottky Body Diode를 집적하여 향상된 Reverse Recovery 특성을 가지는 50V Power MOSFET)

  • Lee, Byung-Hwa;Cho, Doo-Hyung;Kim, Kwang-Soo
    • Journal of IKEEE
    • /
    • v.19 no.1
    • /
    • pp.94-100
    • /
    • 2015
  • In this paper, 50V power U-MOSFET which replace the body(PN) diode with Schottky is proposed. As already known, Schottky diode has the advantage of reduced reverse recovery loss than PN diode. Thus, the power MOSFET with integrated Schottky integrated can minimize the reverse recovery loss. The proposed Schottky body diode U-MOSFET(SU-MOS) shows reduction of reverse recovery loss with the same transfer, output characteristic and breakdown voltage. As a result, 21.09% reduction in peak reverse current, 7.68% reduction in reverse recovery time and 35% improvement in figure of merit(FOM) are observed when the Schottky width is $0.2{\mu}m$ and the Schottky barrier height is 0.8eV compared to conventional U-MOSFET(CU-MOS). The device characteristics are analyzed through the Synopsys Sentaurus TCAD tool.

Development of 900 V Class MOSFET for Industrial Power Modules (산업 파워 모듈용 900 V MOSFET 개발)

  • Chung, Hunsuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.109-113
    • /
    • 2020
  • A power device is a component used as a switch or rectifier in power electronics to control high voltages. Consequently, power devices are used to improve the efficiency of electric-vehicle (EV) chargers, new energy generators, welders, and switched-mode power supplies (SMPS). Power device designs, which require high voltage, high efficiency, and high reliability, are typically based on MOSFET (metal-oxide-semiconductor field-effect transistor) and IGBT (insulated-gate bipolar transistor) structures. As a unipolar device, a MOSFET has the advantage of relatively fast switching and low tail current at turn-off compared to IGBT-based devices, which are built on bipolar structures. A superjunction structure adds a p-base region to allow a higher yield voltage due to lower RDS (on) and field dispersion than previous p-base components, significantly reducing the total gate charge. To verify the basic characteristics of the superjunction, we worked with a planar type MOSFET and Synopsys' process simulation T-CAD tool. A basic structure of the superjunction MOSFET was produced and its changing electrical characteristics, tested under a number of environmental variables, were analyzed.