• 제목/요약/키워드: power MOSFET

검색결과 635건 처리시간 0.036초

SiC MOSFET를 사용한 3상 인버터용 게이트 드라이버 전원 설계 (Design of Gate Driver Power Supply for 3-Phase Inverter Using SiC MOSFET)

  • 이상용;정세교
    • 전력전자학회논문지
    • /
    • 제26권6호
    • /
    • pp.429-436
    • /
    • 2021
  • The design of a gate driver power supply for a three-phase inverter using a silicon carbide (SiC) MOSFET. The requirements for the power supply circuit of the gate driver for the SiC MOSFET are investigated, and a flyback converter using multiple transformers is used to make the four isolated power supplies. The proposed method has the advantage of easily constructing the power supply circuit in a limited space as compared with a multi-output flyback converter using a single core. The power supply circuit for the three-phase SiC MOSFET inverter for driving an AC motor is designed and implemented. The operation and validity of the implemented circuit are verified through simulations and experiments.

전력용 MOSFET의 특성 (The Characteristics of Power MOSFET)

  • 배진용;김용;권순도;조규만;엄태민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 에너지변화시스템부문
    • /
    • pp.131-135
    • /
    • 2009
  • This paper reviews the characteristics of Power MOSFET device technology that are leading to improvements in power loss for power electronic system. The silicon bipolar power transistor has been displaced by silicon power MOSFET's in low and high voltage system. The power electronic technology requires the marriage of power device technology with MOS-gated device and bipolar analog circuits.

  • PDF

MOSFET의 특성변화에 따른RF 전력증폭기의 신뢰성 특성 분석 (Reliability Characteristics of RF Power Amplifier with MOSFET Degradation)

  • 최진호
    • 한국정보통신학회논문지
    • /
    • 제11권1호
    • /
    • pp.83-88
    • /
    • 2007
  • MOSFET 트랜지스터의 전기적인 특성 변화에 따른 Class-E RF 전력 증폭기의 신뢰성 특성을 분석하였다. Class-E 전력 증폭기에서 MOSFET는 높은 효율을 얻기 위해 스위치로 동작하며, 이로 인해 MOSFET가 off 되었을 때 드레인 단자에 높은 전압 신호가 발생한다. 회로가 동작함에 따라 높은 전압의 스트레스로 인하여 MOSFET의 문턱 전압은 증가하고 전자의 이동도는 감소하여 MOSFET의 드레인 전류는 감소하게 된다. Class-E 전력 증폭기에서 MOSFET의 전류가 감소하면 전력 효율 및 출력 전력은 감소하게 된다. 그러나 class-E 전력증폭기에서 작은 부하 인덕터를 사용할 경우 큰 인덕터를 사용하는 경우에 비 해 신뢰성 특성을 향상시킬 수 있다. 1mH의 부하 인덕터를 사용한 경우 $10^{7}$초 후에 드레인 전류는 46.3%가 감소하였으며, 전력 효율은 58%에서 36%로 감소하였다. 그러나 1nH의 부하 인덕터를 사용한 경우 드레인 전류는 8.89%, 전력 효율 59%에서 55%로 감소하여 우수한 신뢰성 특성을 보여주었다.

IGBT-MOSFET 병렬 스위치를 이용한 고효율 직류-직류 변환기 (A High Efficiency DC-DC Converter Using IGBT-MOSFET Parallel Switches)

  • 장동렬;서영민;홍순찬;윤덕용;황용하
    • 전력전자학회논문지
    • /
    • 제4권2호
    • /
    • pp.152-158
    • /
    • 1999
  • IGBT는 전압정격 및 전류정격이 높고 도통손실이 낮아서 스위칭 전원장치에 많이 쓰이고 있는 추세에 있다. 그러나 IGBT는 MOSFET에 비해 스위칭 특성이 좋지 않아서 스위칭 손실이 많이 발생하며 주파수에도 제한을 받는다. 본 논문에서는 IGBT와 MOSFET의 장점을 살리기 위하여 IGBT에 MOSFET를 병렬로 접속한 IGBT-MOSFET 병렬 스위치를 사용한 2.4kW, 48V 출력의 고효율 반브리지 직류-직류 변환기를 제안한다. 병렬 스위치에서 주 스위칭 소자인 IGBT는 도통구간에서 주된 역할을 하며 MOSFET는 스위칭시에 주된 역할을 한다. 스위칭 손실을 분석하기 위하여 선형화 모델을 사용하였으며 시뮬레이션을 통하여 변환기의 동작을 확인하였다.

  • PDF

Gate 전하를 감소시키기 위해 Separate Gate Technique을 이용한 Trench Power MOSFET (Trench Power MOSFET using Separate Gate Technique for Reducing Gate Charge)

  • 조두형;김광수
    • 전기전자학회논문지
    • /
    • 제16권4호
    • /
    • pp.283-289
    • /
    • 2012
  • 이 논문에서 Trench Power MOSFET의 스위칭 성능을 향상시키기 위한 Separate Gate Technique(SGT)을 제안하였다. Trench Power MOSFET의 스위칭 성능을 개선시키기 위해서는 낮은 gate-to-drain 전하 (Miller 전하)가 요구된다. 이를 위하여 제안된 separate gate technique은 얇은(~500A)의 poly-si을 deposition하여 sidewall을 형성함으로서, 기존의 Trench MOSFET에 비해 얇은 gate를 형성하였다. 이 효과로 gate와 drain에 overlap 되는 면적을 줄일 수 있어 gate bottom에 쌓이는 Qgd를 감소시키는 효과를 얻었고, 이에 따른 전기적인 특성을 Silvaco T-CAD silmulation tool을 이용하여 일반적인 Trench MOSFET과 성능을 비교하였다. 그 결과 Ciss(input capacitance : Cgs+Cgd), Coss(output capacitance : Cgd+Cds) 및 Crss(reverse recovery capacitance : Cgd) 모두 개선되었으며, 각각 14.3%, 23%, 30%의 capacitance 감소 효과를 확인하였다. 또한 inverter circuit을 구성하여, Qgd와 capacitance 감소로 인한 24%의 reverse recovery time의 성능향상을 확인하였다. 또한 제안된 소자는 기존 소자와 비교하여 어떠한 전기적 특성저하 없이 공정이 가능하다.

전력용 MOSFET의 특성 및 기술동향 (The Characteristics and Technical Trends of Power MOSFET)

  • 배진용;김용
    • 전기학회논문지
    • /
    • 제58권7호
    • /
    • pp.1363-1374
    • /
    • 2009
  • This paper reviews the characteristics and technical trends in Power MOSFET technology that are leading to improvements in power loss for power electronic system. The silicon bipolar power transistor has been displaced by silicon power MOSFET's in low and high voltage system. The power electronic technology requires the marriage of power device technology with MOS-gated device and bipolar analog circuits. The technology challenges involved in combining power handling capability with finger gate, trench array, super junction structure, and SiC transistor are described, together with examples of solutions for telecommunications, motor control, and switch mode power supplies.

SPICE를 이용한 MOSFET의 병렬운전 특성해석 및 설계 (Design and Analysis for Parallel Operation of Power MOSFETs Using SPICE)

  • 김윤호;윤병도;강영록
    • 대한전기학회논문지
    • /
    • 제43권2호
    • /
    • pp.251-258
    • /
    • 1994
  • To apply the Power MOSFET to the high powerd circuits, the parallel operation of the Power MOSFET must be considered because of their low power rating. This means, in practical applications, design methods for the parallel operations are required. However, it is very difficult to investigate the problem of parallel operations by directly changing the internal parameters of the MOSFET. Thus, in this paper, the effects of internal parameters for the parallel operation are investigated using SPICE program which is often used and known that the program is very reliable. The investigation results show that while the gate resistance and gate capacitances are the parameters which affect to the dynamic switching operations, the drain and source resistances are the parameters which affect to the steady-state current unbalances. Through this investigation, the design methods for the parallel operation of the MOSFET are suggested, which, in turn, contributes to the practical use of Power MOSFETs.

  • PDF

스마트 LED Driver ICs 패키지용 700 V급 Power MOSFET의 설계 최적화에 관한 연구 (Study on the Design of Power MOSFET for Smart LED Driver ICs Package)

  • 강이구
    • 한국전기전자재료학회논문지
    • /
    • 제29권2호
    • /
    • pp.75-78
    • /
    • 2016
  • This research was designed 700 level power MOSFET for smart LED driver ICs package. And we analyzed electrical characteristics of the power MOSFET as like breakdown voltage, on-resistance and threshold voltage. Because this research is important optimal design for smart LED ICs package, we designed power MOSFET with design and process parameter. As a result of this research, we obtained $60{\mu}m$ N-drift layer depth, 791.29 V breakdown voltage, $0.248{\Omega}{\cdot}cm^2$ on resistance and 3.495 V threshold voltage. We will use effectively this device for smart LED driver ICs package.

Schottky Body Diode를 집적하여 향상된 Reverse Recovery 특성을 가지는 50V Power MOSFET (50V Power MOSFET with Improved Reverse Recovery Characteristics Using an Integrated Schottky Body Diode)

  • 이병화;조두형;김광수
    • 전기전자학회논문지
    • /
    • 제19권1호
    • /
    • pp.94-100
    • /
    • 2015
  • 본 논문에서는 U-MOSFET 내부의 기생 body 다이오드(PN diode)를 쇼트키 body 다이오드(Schottky body diode)로 대체한 50V급 전력 U-MOSFET을 제안하였다. 쇼트키 다이오드는 PN 다이오드와 비교 시, 역 회복 손실(reverse recovery loss)을 감소시킬 수 있는 장점을 가지고 있다. 따라서 전력 MOSFET의 기생 body 다이오드를 쇼트키 body 다이오드를 대신함으로써 역 회복 손실을 최소화 할 수 있다. 제안된 쇼트키 body 다이오드(Schottky body diode) U-MOSFET(SU-MOS)를 conventional U-MOSFET(CU-MOS)와 전기적 특성을 비교한 결과, 전달(transfer) 및 출력(output)특성, 항복(breakdown)전압 등 정적(static) 특성의 변화 없이 감소된 역 회복 손실을 얻을 수 있었다. 즉, 쇼트키 다이오드의 폭(width)이 $0.2{\mu}m$, 쇼트키 장벽 높이(Schottky barrier height)가 0.8eV일 때 첨두 역전류(peak reverse current)는 21.09%, 역 회복 시간(reverse recovery time)은 7.68% 감소하였고, 성능지수(figure of merit(FOM))는 35% 향상되었다. 제안된 소자의 특성은 Synopsys사의 Sentaurus TCAD를 사용하여 분석되었다.

산업 파워 모듈용 900 V MOSFET 개발 (Development of 900 V Class MOSFET for Industrial Power Modules)

  • 정헌석
    • 한국전기전자재료학회논문지
    • /
    • 제33권2호
    • /
    • pp.109-113
    • /
    • 2020
  • A power device is a component used as a switch or rectifier in power electronics to control high voltages. Consequently, power devices are used to improve the efficiency of electric-vehicle (EV) chargers, new energy generators, welders, and switched-mode power supplies (SMPS). Power device designs, which require high voltage, high efficiency, and high reliability, are typically based on MOSFET (metal-oxide-semiconductor field-effect transistor) and IGBT (insulated-gate bipolar transistor) structures. As a unipolar device, a MOSFET has the advantage of relatively fast switching and low tail current at turn-off compared to IGBT-based devices, which are built on bipolar structures. A superjunction structure adds a p-base region to allow a higher yield voltage due to lower RDS (on) and field dispersion than previous p-base components, significantly reducing the total gate charge. To verify the basic characteristics of the superjunction, we worked with a planar type MOSFET and Synopsys' process simulation T-CAD tool. A basic structure of the superjunction MOSFET was produced and its changing electrical characteristics, tested under a number of environmental variables, were analyzed.