• Title/Summary/Keyword: powder-in-tube

Search Result 213, Processing Time 0.029 seconds

Mechanical Strength Values of Reaction-Bonded-Silicon-Carbide Tubes with Different Sample Size (튜브형상 반응소결 탄화규소 부품의 시편크기에 따른 강도평가 유용성 고찰)

  • Kim, Seongwon;Lee, Soyul;Oh, Yoon-Suk;Lee, Sung-Min;Han, Yoonsoo;Shin, Hyun-Ick;Kim, Youngseok
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.450-456
    • /
    • 2017
  • Reaction-bonded silicon carbide (RBSC) is a SiC-based composite ceramic fabricated by the infiltration of molten silicon into a skeleton of SiC particles and carbon, in order to manufacture a ceramic body with full density. RBSC has been widely used and studied for many years in the SiC field, because of its relatively low processing temperature for fabrication, easy use in forming components with a near-net shape, and high density, compared with other sintering methods for SiC. A radiant tube is one of the most commonly employed ceramics components when using RBSC materials in industrial fields. In this study, the mechanical strengths of commercial RBSC tubes with different sizes are evaluated using 3-point flexural and C-ring tests. The size scaling law is applied to the obtained mechanical strength values for specimens with different sizes. The discrepancy between the flexural and C-ring strengths is also discussed.

The synthesis and formation mechanism of the fine $BaTiO_3$ powders by ultrasonic spray pyrolysis (초음파 분무 열분해법에 의한 $BaTiO_3$ 미분말의 합성 및 형성기구 규명)

  • Heo, H.B.;Shin, K.C.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.2
    • /
    • pp.178-189
    • /
    • 1994
  • Fine $BaTiO_3$ powder was synthesized from the various starting solution with 0.05 M by ultrasonic spray pyrolysis method. The conditions of synthesis were fixed on flow rate was 0.5 cm/sec, low temperature furnace was $300^{\circ}C$, and high temperatures furnace was $700^{\circ}C$. The formation procedure was investigated directly by SEM with the collected particle from the each reaction step. Also, the trace of particle in reaction tube was researched theoretically. Fine $BaTiO_3$ was synthesized only in the case of nitrate aqueous solution. The synthesized $BaTiO_3$ powder was porous and spherical which was consist of primary particle at the size of 19.1 nm. The formation procedure was as follows : the particle size decreased in drying step and then increased in initial thermal decomposition step. Finally, particle size was decreased to $0.42 {mu}m$. The trace of particle in reaction tube was also theoretically simulated and discussed.

  • PDF

Determination of the Trace Elements in $UO_2$ Powder by ICP-AES Directyl Coupled with Extraction Chromatography (추출크로마토그래피와 유도결합플라스마 원자방출분광법을 이용한 이산화우라늄분말 중 미량금속불순물 분석)

  • Choi, Kwang-Soon;Lee, Chang-Heon;Pyo, Hyung-Yeal;Han, Sun-Ho;Suh, Moo-Yul;Eom, Tae-Yoon;Lee, Gae-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.9
    • /
    • pp.813-819
    • /
    • 1993
  • An ICP-AES system directly connected with a separation column was used in order to determine the trace elements in $UO_2$ powder promptly and reduce the volume of the waste solution. The outlet of a separation column, which was filled with Teflon powder ($330\;{\mu}m$) coated with tri-n-butyl phosphate (TBP) as extractant, was directly connected with sample injection tube of ICP-AES. Eleven elements including molybdenum in $UO_2$ powder were separated and determined simultaneously. Recoveries of these elements were $91{\sim}110%$ and these results were agreed with those of solvent extraction methods. This method was applicable to quality control in manufacturing nuclear fuel.

  • PDF

Pressureless Sintering and Spark-Plasma Sintering of Fe-TiC Composite Powders (Fe-TiC 복합재료 분말의 상압소결과 방전플라즈마소결)

  • Lee, B.H.;Bae, S.W.;Bae, S.W.;Khoa, H.X.;Kim, Ji Soon
    • Journal of Powder Materials
    • /
    • v.22 no.4
    • /
    • pp.283-288
    • /
    • 2015
  • Two sintering methods of a pressureless sintering and a spark-plasma sintering are tested to densify the Fe-TiC composite powders which are fabricated by high-energy ball-milling. A powder mixture of Fe and TiC is prepared in a planetary ball mill at a rotation speed of 500 rpm for 1h. Pressureless sintering is performed at 1100, 1200 and $1300^{\circ}C$ for 1-3 hours in a tube furnace under flowing argon gas atmosphere. Spark-plasma sintering is carried out under the following condition: sintering temperature of $1050^{\circ}C$, soaking time of 10 min, sintering pressure of 50 MPa, heating rate of $50^{\circ}C$, and in a vacuum of 0.1 Pa. The curves of shrinkage and its derivative (shrinkage rate) are obtained from the data stored automatically during sintering process. The densification behaviors are investigated from the observation of fracture surface and cross-section of the sintered compacts. The pressureless-sintered powder compacts show incomplete densification with a relative denstiy of 86.1% after sintering at $1300^{\circ}C$ for 3h. Spark-plasma sintering at $1050^{\circ}C$ for 10 min exhibits nearly complete densification of 98.6% relative density under the sintering pressure of 50 MPa.

Fabrication of BSCCO Superconductor Tube for Current Lead Application (전류인입선 응용을 위한 BSCCO 초전도 튜브의 제조)

  • Choi, Jung-Suk;Jun, Byung-Hyuk;Hyun, Ok-Bae;Kim, Chan-Joong
    • Progress in Superconductivity
    • /
    • v.10 no.2
    • /
    • pp.103-107
    • /
    • 2009
  • $Bi_2Sr_2Ca_1Cu_2O_x$(BSCCO 2212) superconductors for current lead were fabricated by centrifugal melting process(CMP). BSCCO 2212 powder was melted at $1200^{\circ}\C$ in a resistance furnace using a Pt crucible and poured in a rotating cylindrical mold preheated at $550^{\circ}\C$ for 2 hour. The solidified BSCCO-2212 samples were heat-treated by partial melting process in oxygen atmosphere. The current-voltage curves at 77 K of the samples were obtained by transport measurement, and the microstructure was investigated by scanning electron microscope. The $J_c$ values at 77 K of the tubes partially melted at $840^{\circ}C,\;860^{\circ}C\;and\;880^{\circ}C$ were 492, 430 and 398 $A/cm^2$, respectively. It was observed that the plate-like grains in BSCCO 2212 tube was more developed in the sample heat-treated at $840^{\circ}C$. It was found that the critical current of the BSCCO 2212 samples was dependent on the partial melting schedule regarding the grain shape and size of the BSCCO 2212.

  • PDF

Flow Visualization of Pulsatile Flow in a Branching Tube using the PIV System and Numerical Analysis (PIV와 수치해석을 이용한 분지관내 맥동유동의 가시화)

  • Roh, Hyung-Woon;Suh, Sang-Ho;Yoo, Sang-Sin
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.535-540
    • /
    • 2000
  • The objective of the present study is to visualize the pulsatile flow fields by using three-dimensional computer simulation and the PIV system. A closed flow loop system was built for the steady and unsteady experiments. The Harvard pulsatile pump was used to generate the pulsatile pressure and velocity waveforms. Conifer powder as the tracing particles was added to water to visualize the flow field. Two consecutive particle images were captured by a CCD camera for the image processing. The cross-correlation method in combination with the moving searching area algorithm was applied for the image processing of the flow visualization. The pulsatile flow fields were visualized effectively by the PIV system in conjunction with the applied algorithm. The range validation and the area interpolation methods were used to obtain the final velocity vectors with high accuracy. The finite volume predictions were used to analyze three-dimensional flow patterns in the bifurcation model. The results of the PIV experiment and the computer simulation are in good agreement and the results show the recirculation zones and formation of the paired secondary flow distal to the apex of the bifurcated model. The results also show that the branch flow is pushed strongly to the inner wall due to the inertial force effect and helical motions are generated as the flow proceeds toward the outer wall.

  • PDF

A Simple Device of the Dry Tetrabromophenolphthalein Ethyl Ester Reagent Strip for the Detection of Methamphetamine

  • Choi, Myung-Ja;Song, Eun-Young;Kim, Seung-Ki;Choi, Jeong-Eun;Lho, Dong-Seok;Park, Jong-Sei
    • Archives of Pharmacal Research
    • /
    • v.16 no.3
    • /
    • pp.227-230
    • /
    • 1993
  • A new device to detect methamphetamine (MA), amphetamine(A) and its metabolites in urine was developed using the paper strip method and the test tube method of dry chemical reagents. The reagent containing tetrabromophenolphthalein ethyl ester (TBPE) and borax. For the TBPE paper strip method, a device was prepared with a window at each end of the reagent paper strip ; one window is for the sample application, and the other window is for the methylene chloride. The diffused sample from one window reacts with reagent in the paper and produces color at the point where it meets with methylene chloride which has diffused form the other side. A positive smaple produces as red-purple color and the negative sample a greenish color, with a detection limit of 5-10 ppm. The result can be obtained within one minute. For the TBPE test tube method which contains dry reagents, the detection limit is 5 ppm and the result can be obtaineed within 30 seconds, however the carry-on is not as convenient as the paper strip method. The performance of both methods were evlauated by comparing with the results of gas chromatography (GC) and fluorescence polarizaiton immunoassay (FPIA). The results were proven that both methods were useful as primary screening reagents to detect MA in urine and in dry powder.

  • PDF

An Implementation of an Integrated Degasing System for Aluminum Molten Metal in Continuous Casting (알루미늄 연속주조 용탕의 탈 가스 일체화 장치 개발)

  • Lee, Yong-Joong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • There are some methods that have been used to manage a degasing process in recent years, such as an injection method that uses aluminum molten metal powder and chemicals supplier and input method that supplies argon and nitrogen, or chlorine gas by using a gas blow-tube. However, these methods show some problems, and it shows that it is a difficult process to handle, pollution due to producing a lot of toxic gases like chlorine and fluoride gas, irregular effects, and lowering work efficiency due to the excessive processing time. The problems that are the most fatal are the producing a lot of sludge due to the reaction of aluminum molten metal with chemicals, loss of metals, and decreasing the life of refractory materials. In order to solve these problems, this paper develops a technology that is related to aluminum continuous casting molten metal and monolithic degasing apparatus. A degasing apparatus developed in this study improved the existing methods and prevented environmental pollution with smokeless, odorless, and harmlessness by using a new method that applies argon and nitrogen gas in which the methods used in the West and Japan are eliminated. The method developed in this study decreases the molten metal processing and settling time compared to the existing methods and improves the workers' health, safety, and environment because there is no pollution in processes.

Electrochemical Properties of Carbon Nano-Tube Electrode (탄소나노튜브 전극의 전기화학적 특성)

  • Lee Dong-Yoon;Koo Bo-Kun;Lee Won-Jae;Song Jae-Sung;Kim Hyun-Ju
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.4
    • /
    • pp.139-143
    • /
    • 2005
  • For application of carbon nano-tube (CNT) as a counter electrode materials of dye-sensitized solar cell (DSSC), the electrochemical behavior of CNT electrode was studied, employing cyclic-voltammetry (C-V) and impedance spectroscopy. Fabrication of CNT-paste and formation of CNT-counter electrode for characteristic measurement have been carried out using ball-milling and doctor blade process, respectively. Unit cell for measurements was assembled using Pt electrode, CNT electrode, and iodine-embedded electrolyte. Field emission-scanning electron microscopy (FE-SEM) was used for structural investigation of CNT powder and electrode. Sheet resistance of electrode was measured with 4-point probe method. Electrochemical properties of electrode, C-V and impedance spectrum, were studied, employing potentiogalvanostat (EG&G 273A) and lock in amplifier (EG&G 5210). As a results, the sheet resistance of CNT electrode is almost similar to that of F-doped SnO2 (FTO) coated glass substrate as approximately 10 ohm/sq. From C-V and impedance spectroscopy measurements, it was found that CNT electrode has high reaction rate and low interface reaction resistance between CNT surface and electrolyte. These results provides that CNT electrode were superior to that of conventional Pt electrode. Particularly, the reaction rate in the CNT electrode is about thrice high than Pt electrode. Therefore. CNT electrode is to be good candidate material for counter electrode in DSSC.

공정변수에 따른 초전도 튜브의 전기적 특성변화

  • Park, C.W.;Jang, G.E.;Ha, D.W.;Seung, T.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.73-76
    • /
    • 2004
  • High-temperature Superconductor(HTS) tubes were fabricated in term of different processing variables such as preheating temperature, speed of mold rotation and cooling rate by centrifugal forming method. For powder melting by induction the optimum range of melting temperatures and preheating temperature were $1050^{\circ}C{\sim}1100^{\circ}C$ and $550^{\circ}C$ for 30min, respectively. The mould roating speed was 1000rpm. A tube was annealed at $840^{\circ}C$ for 72hours in oxygen atmosphere. The plate-like grains were well developed along the roating direction and typical grain size was about more than $40{\mu}m$. It was found that Ic values increased with increasing the preheating temperature and speed of mold rotation. While Ic decreased with increasing the cooling rate. The measured Ic in $50mm{\times}70mm{\times}2.5mm$ tube was about 896Amp.

  • PDF