DOI QR코드

DOI QR Code

Pressureless Sintering and Spark-Plasma Sintering of Fe-TiC Composite Powders

Fe-TiC 복합재료 분말의 상압소결과 방전플라즈마소결

  • Lee, B.H. (GIL Co. Ltd.) ;
  • Bae, S.W. (School of Materials Science and Engineering, University of Ulsan) ;
  • Bae, S.W. (School of Materials Science and Engineering, University of Ulsan) ;
  • Khoa, H.X. (School of Materials Science and Engineering, Hanoi University of Science and Technology) ;
  • Kim, Ji Soon (School of Materials Science and Engineering, University of Ulsan)
  • Received : 2015.08.12
  • Accepted : 2015.08.25
  • Published : 2015.08.28

Abstract

Two sintering methods of a pressureless sintering and a spark-plasma sintering are tested to densify the Fe-TiC composite powders which are fabricated by high-energy ball-milling. A powder mixture of Fe and TiC is prepared in a planetary ball mill at a rotation speed of 500 rpm for 1h. Pressureless sintering is performed at 1100, 1200 and $1300^{\circ}C$ for 1-3 hours in a tube furnace under flowing argon gas atmosphere. Spark-plasma sintering is carried out under the following condition: sintering temperature of $1050^{\circ}C$, soaking time of 10 min, sintering pressure of 50 MPa, heating rate of $50^{\circ}C$, and in a vacuum of 0.1 Pa. The curves of shrinkage and its derivative (shrinkage rate) are obtained from the data stored automatically during sintering process. The densification behaviors are investigated from the observation of fracture surface and cross-section of the sintered compacts. The pressureless-sintered powder compacts show incomplete densification with a relative denstiy of 86.1% after sintering at $1300^{\circ}C$ for 3h. Spark-plasma sintering at $1050^{\circ}C$ for 10 min exhibits nearly complete densification of 98.6% relative density under the sintering pressure of 50 MPa.

Keywords

References

  1. R. Tyagi: Wear, 259 (2005) 569. https://doi.org/10.1016/j.wear.2005.01.051
  2. Z. Q. Zhang, P. Shen, Y. Wang, Y. P. Dong and Q. C. Jiang: J. Mater. Sci., 42 (2007) 8350. https://doi.org/10.1007/s10853-006-0764-6
  3. S. C. Tjong and Z. Ma: Mater. Sci. Eng. R, 29 (2000) 49. https://doi.org/10.1016/S0927-796X(00)00024-3
  4. I. Ibrahim, F. Mohamed and E. Lavernia: J. Mater. Sci., 26 (1991) 1137. https://doi.org/10.1007/BF00544448
  5. J. Vreeling, V. Ocelik and J. T. M. De Hosson: Acta. Mater., 50 (2002) 4913. https://doi.org/10.1016/S1359-6454(02)00366-X
  6. F. Akhtar and S. Guo: Mater. Charact., 59 (2008) 84. https://doi.org/10.1016/j.matchar.2006.10.021
  7. A. K. Srivastava and K. Das: Mater. Sci. Eng. A, 516 (2009) 1. https://doi.org/10.1016/j.msea.2009.04.041
  8. L. S. Zhong, Y. H. Xu, H. Mirabbos, J. B. Wang and J. Wang: Mater. Des., 32 (2011) 3790. https://doi.org/10.1016/j.matdes.2011.03.031
  9. J. S. Guo, S. J. Wu and G. Cai Su: Wear, 269 (2010) 285. https://doi.org/10.1016/j.wear.2010.04.011
  10. F. Akhtar and S. J. Guo: Mater. Charact., 59 (2008) 84. https://doi.org/10.1016/j.matchar.2006.10.021
  11. A. Emamian, S. F. Corbin and A. Khajepour: Surf. Coat. Technol., 206 (2012) 4495. https://doi.org/10.1016/j.surfcoat.2012.01.051
  12. Y. F. Yang, H. Y. Wang, Y. H. Liang, R. Y. Zhao and Q. C. Jiang: Mater. Sci. Eng. A, 474 (2008) 355. https://doi.org/10.1016/j.msea.2007.04.061
  13. X. H. Wang, S. L. Song, Z. D. Zou and S. Y. Qu: Mater. Sci. Eng. A, 441 (2006) 60. https://doi.org/10.1016/j.msea.2006.06.015
  14. J. B. Liu, L. M. Wang and H. Q. Li: Appl. Surf. Sci., 255 (2009) 4921. https://doi.org/10.1016/j.apsusc.2008.12.038
  15. J. Wang and Y. S. Wang: Mater. Lett., 61 (2007) 4393. https://doi.org/10.1016/j.matlet.2007.02.011
  16. Q. C. Jiang, F. Zhao, H. Y. Wang and Z. Q. Zhang: Mater. Lett., 59 (2005) 2043. https://doi.org/10.1016/j.matlet.2004.09.060
  17. K. Das, T. K. Bandyopadhyay and S. Das: J. Mater. Sci., 37 (2002) 3881. https://doi.org/10.1023/A:1019699205003
  18. P. Persson, A. E. W. Jarfors and S. Savage: J. Mater. Process. Technol., 127 (2002) 139.
  19. K. Das and T. K. Bandyopadhyay: Mater. Lett., 58 (2004) 1877. https://doi.org/10.1016/j.matlet.2003.11.034
  20. E. Gordo, F. Velasco, N. Anton, and J.M. Torralba: Wear, 239 (2000) 251. https://doi.org/10.1016/S0043-1648(00)00329-X
  21. P. R. Soni: Mechanical alloying: fundamentals and applications, International Science Publishing, Cambridge (1999).
  22. S. M. Zehariad and S. A. Saiidi: Mater. Des., 27 (2006) 684. https://doi.org/10.1016/j.matdes.2004.12.011
  23. Z. A. Munir, U. Anselmi-Tamburini and M. Ohyanagi: J. Mater. Sci., 41 (2006) 763. https://doi.org/10.1007/s10853-006-6555-2
  24. H. B. Feng, Y. Zhou, D. C. Jia and Q. C. Meng: Mater. Sci. Eng. A, 390 (2005) 344. https://doi.org/10.1016/j.msea.2004.08.028
  25. T. Venkateswaran, B. Basu, G. B. Raju and D. Y. Kim: J. Eur. Ceram. Soc., 26 (2006) 2431. https://doi.org/10.1016/j.jeurceramsoc.2005.05.011
  26. B. H. Lee, K. B. Ahn, S. W. Bae, S. W. Bae, H. X. Khoa, B. K. Kim and J. S. Kim: J. Korean Powder Metall. Inst., 22 (2015) 208 (Korean). https://doi.org/10.4150/KPMI.2015.22.3.208

Cited by

  1. Experimental investigation on thermal behaviour of copper-added P/M iron materials at different sintering temperatures pp.2204-2253, 2021, https://doi.org/10.1080/14484846.2019.1575004