• Title/Summary/Keyword: powder melting

Search Result 356, Processing Time 0.023 seconds

Micro Fabrication Process of Powder Compact with Semi-solid Mold

  • Tsumori, Fujio
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.258-259
    • /
    • 2006
  • New powder compaction process, in which a Bingham semi-solid/fluid mold is utilized, is developed to fabricate micro parts. In the present process, a powder material is filled as slurry in a solid wax mold, dried and compressed. The wax is heated during compaction and becomes semi-solid state, which can acts as a pressurized medium for isostatic compaction. Since the compacted micro parts are very fragile, the mold's temperature is controlled to higher than its melting point during unloading, to avoid breakage of the compacts. To demonstrate effectiveness of this process, some micro compacts of alumina are shown as examples.

  • PDF

Laser Rapid Prototyping by Melting Brass Powder (황동 분말의 용융에 의한 레이저 급속 조형법)

  • 최우천;최우영;송대준;이건상
    • Laser Solutions
    • /
    • v.3 no.1
    • /
    • pp.21-28
    • /
    • 2000
  • Selective Laser Sintering (SLS) can produce three-dimensional objects directly from a CAD solid model without part-specific tooling. In this study, a simple rapid prototyping through selective laser sintering on brass powder is investigated using a Nd-YAG laser. Experiments are conducted to produce single lines on a powder-packed bed for various process parameters. Also, temperature distribution in the powder bed and the thickness of a melted line are predicted by finite element analysis. In the numerical analysis, the thermal conductivity of the brass powder which is obtained as a function of state and temperature is used.

  • PDF

Characterization of Compacted and Pressureless Sintered Parts for Molybdenum Oxide Powder according to Hydrogen Reduction Temperature (수소 환원 온도에 따른 몰리브덴 산화물의 성형 및 상압소결특성 평가)

  • Jong Hoon Lee;Kun-Jae Lee
    • Journal of Powder Materials
    • /
    • v.31 no.4
    • /
    • pp.336-341
    • /
    • 2024
  • Molybdenum, valued for its high melting point and exceptional physical and chemical properties, is studied in diverse fields such as electronics, petrochemicals, and aviation. Among molybdenum oxides, molybdenum dioxide stands out for its higher electrical conductivity than other transition metal oxides due to its structural characteristics, exhibiting metallic properties. It is applied as pellets to gas sensors, semiconductors, and secondary batteries for its properties. Thus, research on molybdenum dioxide compaction and pressureless sintering is necessary, yet research on pressureless sintering is currently insufficient. This study synthesized MoO3 powder via solution combustion synthesis and reduced it using the 3% hydrogen/argon gas mixture to investigate the effect of reduction temperature on the powder. Additionally, the reduced powder was compacted and subjected to pressureless sintering with temperature as a variable. The density and the microstructure of brown parts were analyzed and discussed.

Fabrication of BSCCO Superconductor Tube for Current Lead Application (전류인입선 응용을 위한 BSCCO 초전도 튜브의 제조)

  • Choi, Jung-Suk;Jun, Byung-Hyuk;Hyun, Ok-Bae;Kim, Chan-Joong
    • Progress in Superconductivity
    • /
    • v.10 no.2
    • /
    • pp.103-107
    • /
    • 2009
  • $Bi_2Sr_2Ca_1Cu_2O_x$(BSCCO 2212) superconductors for current lead were fabricated by centrifugal melting process(CMP). BSCCO 2212 powder was melted at $1200^{\circ}\C$ in a resistance furnace using a Pt crucible and poured in a rotating cylindrical mold preheated at $550^{\circ}\C$ for 2 hour. The solidified BSCCO-2212 samples were heat-treated by partial melting process in oxygen atmosphere. The current-voltage curves at 77 K of the samples were obtained by transport measurement, and the microstructure was investigated by scanning electron microscope. The $J_c$ values at 77 K of the tubes partially melted at $840^{\circ}C,\;860^{\circ}C\;and\;880^{\circ}C$ were 492, 430 and 398 $A/cm^2$, respectively. It was observed that the plate-like grains in BSCCO 2212 tube was more developed in the sample heat-treated at $840^{\circ}C$. It was found that the critical current of the BSCCO 2212 samples was dependent on the partial melting schedule regarding the grain shape and size of the BSCCO 2212.

  • PDF

Effects of Chemical Composition and Particle Size of Starting Aluminum Source on the Spheroidization in the Flame Fusion Process (화염용융법에 의한 구상 알루미나 제조에 미치는 초기 알루미나 원료의 화학조성과 입도의 영향)

  • Eom, Sun-Hui;Pee, Jae-Hwan;Lee, Jong-Keun;Hwang, Kwang-Taek;Cho, Woo-Seok;Kim, Kyeong-Ja
    • Journal of Powder Materials
    • /
    • v.16 no.6
    • /
    • pp.431-437
    • /
    • 2009
  • Various inorganic fillers improve the thermal conductivity and physical properties of organic products. Alumina has been used a representative filler in the heat radiation sheet for the heat radiation of electric device. The high filling rate of alumina increases the thermal conductivity and properties of products. We successfully developed the spherical alumina by flame fusion process using the oxygen burner with LPG fuel. In the high temperature flame (2500$\sim$3000$^{\circ}C$) of oxygen burner, sprayed powders were melting and then rotated by carrier gas. This surface melting and rotation process made spherical alumina. Especially effects of chemical composition and particle size of stating materials on the melting behavior of starting materials in the flame and spheroidization ratio were investigated. As a result, spheroidization ratio of boehmite and aluminum hydroxide with endothermic reaction of dehydration process was lower than that of the sintered alumina without dehydration reaction.

Influence of Hot Isostatic Press on Quasi-static and Dynamic Mechanical Properties of SLM-printed Ti-6Al-4V Alloy (SLM 방식으로 적층 제조된 Ti-6Al-4V 합금의 HIP 처리에 따른 준정적 및 동적 기계적 특성 변화)

  • Jang, Ji-Hoon;Choi, Young-Sin;Kim, Hyeoung-Kyun;Lee, Dong-Geun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.3
    • /
    • pp.99-106
    • /
    • 2020
  • Selective laser melting (SLM) is an additive manufacturing process by melting metallic powders and stacking into layers, and can product complex shapes or near-net-shape (NNS) that are difficult to product by conventional processes. Also, SLM process is able to raise the efficiency of production by creating a streamlined manufacturing process. For manufacturing in SLM process using Ti-6Al-4V powder, analysis of microstructural evolution and evaluation of mechanical properties are essential because of rapid melting and solidification process of powders according to high laser power and rapid scan speed. In addition, it requires a post-processing because the soundness and mechanical properties are degraded by defects such as pore, un-melted powder, lack-of-fusion, etc. In this study, hot isostatic press (HIP) was conducted as a post-processing on SLM-printed Ti-6Al-4V alloy. Microstructure of post-processed Ti-6Al-4V alloy was compared to as-built Ti-6Al-4V, and the evolution of quasi-static (Vickers hardness, room temperature tensile characteristic) and dynamic (high-cycle fatigue characteristic) mechanical properties were analyzed.

Effect of Porosity on Mechanical Anisotropy of 316L Austenitic Stainless Steel Additively Manufactured by Selective Laser Melting (선택적 레이저 용융법으로 제조한 316L 스테인리스강의 기계적 이방성에 미치는 기공의 영향)

  • Park, Jeong Min;Jeon, Jin Myoung;Kim, Jung Gi;Seong, Yujin;Park, Sun Hong;Kim, Hyoung Seop
    • Journal of Powder Materials
    • /
    • v.25 no.6
    • /
    • pp.475-481
    • /
    • 2018
  • Selective laser melting (SLM), a type of additive manufacturing (AM) technology, leads a global manufacturing trend by enabling the design of geometrically complex products with topology optimization for optimized performance. Using this method, three-dimensional (3D) computer-aided design (CAD) data components can be built up directly in a layer-by-layer fashion using a high-energy laser beam for the selective melting and rapid solidification of thin layers of metallic powders. Although there are considerable expectations that this novel process will overcome many traditional manufacturing process limits, some issues still exist in applying the SLM process to diverse metallic materials, particularly regarding the formation of porosity. This is a major processing-induced phenomenon, and frequently observed in almost all SLM-processed metallic components. In this study, we investigate the mechanical anisotropy of SLM-produced 316L stainless steel based on microstructural factors and highly-oriented porosity. Tensile tests are performed to investigate the microstructure and porosity effects on mechanical anisotropy in terms of both strength and ductility.

Irradiation Hardening Property of Inconel 718 Alloy produced by Selective Laser Melting (Selective Laser Melting 방식으로 적층제조된 Inconel 718 합금의 조사 경화 특성)

  • Joowon Suh;Sangyeob Lim;Hyung-Ha Jin;Young-Bum Chun;Suk Hoon Kang;Heung Nam Han
    • Journal of Powder Materials
    • /
    • v.30 no.5
    • /
    • pp.431-435
    • /
    • 2023
  • An irradiation hardening of Inconel 718 produced by selective laser melting (SLM) was studied based on the microstructural observation and mechanical behavior. Ion irradiation for emulating neutron irradiation has been proposed owing to advantages such as low radiation emission and short experimental periods. To prevent softening caused by the dissolution of γ' and γ" precipitates due to irradiation, only solution annealing (SA) was performed. SLM SA Inconel 718 specimen was ion irradiated to demonstrate the difference in microstructure and mechanical properties between the irradiated and non-irradiated specimens. After exposing specimens to Fe3+ ions irradiation up to 100 dpa (displacement per atom) at an ambient temperature, the hardness of irradiated specimens was measured by nano-indentation as a function of depth. The depth distribution profile of Fe3+ and dpa were calculated by the Monte Carlo SRIM (Stopping and Range of Ions in Matter)-2013 code under the assumption of the displacement threshold energy of 40 eV. A transmission electron microscope was utilized to observe the formation of irradiation defects such as dislocation loops. This study reveals that the Frank partial dislocation loops induce irradiation hardening of SLM SA Inconel 718 specimens.

Preparation of Porous Glass by the Sintering (소결법에 의한 다공질유리의 제조)

  • 박용완;이준영
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.9
    • /
    • pp.957-968
    • /
    • 1994
  • Manufacturing process of porous glass by the filler method was studied. Commercial soda-lime-silicate glass powder was mixed with inorganic salt as the filler such as KCl, K2SO4, Na2SO4. Sintering shrinkages of mixed powders with the variation of sintering temperature were compared, and the effects of the fillers to shrinkages of mixed powder were increased in the order of Na2SO4${\mu}{\textrm}{m}$ of pore diameter were manufactured when the filler sizes 100~200 ${\mu}{\textrm}{m}$. The open pore volume of porous glass is determined by the quantity of filler and porous glasses having open pore volume between 30 and 70 vol% are available. Available sintering temperature range for preparation of porous glass is from the softening temperature of the glass powder to eutectic melting temperature of DTA curve of mixed powder.

  • PDF

Mechanical Alloying Behavior of Immiscible W-Cu-Pb Ternary System (불고용 W-Cu-Pb삼원계의 기계적 합금화 거동)

  • 류성수
    • Journal of Powder Materials
    • /
    • v.5 no.3
    • /
    • pp.220-226
    • /
    • 1998
  • W-12.8wt%Cu-7.2%Pb powders were milled at room temperature and $-100^{\circ}C$ to investigate the mechanical alloying behavior of immiscible W-Cu-Pb system and the effect of milling temperature on the extent of alloying and microstructural refinement. W-Cu-Pb powder reached steady state after further extended milling due to Pb addition, compared to the W-Cu system. The cryomilling at $-100^{\circ}C$ caused the more refinement of powder particle size, and enhanced the solubility of Cu or Pb in W, compared with milling at room temperature. In W-12.8wt%Cu-7.2%Pb powder cryomilled at $-100^{\circ}C$, the monotectic temperature of Cu-Pb as well as the melting temperature of Cu was decreased by refinement of Cu crystalline size, and the most amorphization was occurred after milling for 150 h.

  • PDF