DOI QR코드

DOI QR Code

Characterization of Compacted and Pressureless Sintered Parts for Molybdenum Oxide Powder according to Hydrogen Reduction Temperature

수소 환원 온도에 따른 몰리브덴 산화물의 성형 및 상압소결특성 평가

  • Jong Hoon Lee (Department of Energy Engineering, Dankook University) ;
  • Kun-Jae Lee (Department of Energy Engineering, Dankook University)
  • 이종훈 (단국대학교 에너지공학과) ;
  • 이근재 (단국대학교 에너지공학과)
  • Received : 2024.08.06
  • Accepted : 2024.08.21
  • Published : 2024.08.28

Abstract

Molybdenum, valued for its high melting point and exceptional physical and chemical properties, is studied in diverse fields such as electronics, petrochemicals, and aviation. Among molybdenum oxides, molybdenum dioxide stands out for its higher electrical conductivity than other transition metal oxides due to its structural characteristics, exhibiting metallic properties. It is applied as pellets to gas sensors, semiconductors, and secondary batteries for its properties. Thus, research on molybdenum dioxide compaction and pressureless sintering is necessary, yet research on pressureless sintering is currently insufficient. This study synthesized MoO3 powder via solution combustion synthesis and reduced it using the 3% hydrogen/argon gas mixture to investigate the effect of reduction temperature on the powder. Additionally, the reduced powder was compacted and subjected to pressureless sintering with temperature as a variable. The density and the microstructure of brown parts were analyzed and discussed.

Keywords

Acknowledgement

이 연구는 산업통상자원부 및 산업기술평가관리원 (KEIT) 연구비 지원에 의한 연구임 ('20011286')

References

  1. M. S. Park, Y. D. Kim, J. P. Park and S. D. Choi: Trends Met. Mater. Eng., 21 (2008) 15.
  2. Y. Zhao, Y. Zhang, Z. Yang, Y. Yan and K. Sun: Sci. Technol. Adv. Mater., 14 (2013) 043501.
  3. L. Zhou, H. B. Wu, Z. Wang and X. W. Lou: ACS Appl. Mater. Inter., 3 (2011) 4853.
  4. L. Zhang, H. Lin, L. Zhai, M. Nie, J. Zhou and S. Zhuo: J. Mater. Res., 32 (2017) 292.
  5. H. Zhao, Z. Li, J. Deng, X. Dai, M. Cui, F. Nie, X. Zhang, Z. Ren, Y. Wang, W. Song and J. Niu: Int. J. Hydrogen Energy., 35 (2020) 17422.
  6. H. Zhao, Z. Li, X. Dai, M. Cui, F. Nei, X. Zhang, Z. Ren, Z. Yang, Y. Gan, X. Yin, Y. Wang and W. Song: J. Mater. Chem., 8 (2020) 6732.
  7. H. Du, X. Xie, Q. Zhu, L. Lin, Y. Jiang, Z. Yang, X. Zhau and A. Xu: Nanoscale., 7 (2015) 5752.
  8. F. Xing, H. Yu, C. Cheng, Q. Liu, L. Lai, S. Xia and C. Huang: Chem. Eng. J., 450 (2022) 138130.
  9. M. Saghafi, S. Heshmati-Manesh and A. Ataie: Int. J. Refract. Met. Hard Mater., 30 (2012) 128.
  10. P. A. Benavides, B. Soto and R. H. Palm: Mater. Sci. Eng. A., 701 (2017) 237.
  11. G. T.Lee, C. Maniere, J. McKittrick, A. Gattuso, C. Back and EA. Olevsky: J. Am. Ceram. Soc., 102 (2019) 801.
  12. H. G. Kim, G. S. Kim, S. T. Oh, M. J. Suk and Y. D. Kim: J. Powder Mater., 14 (2007) 386.
  13. H. S. Huang and K. S. Hwang: Metall. Trans. A., 33 (2002) 657.
  14. S. Y. Lee, N. H. Kwon, J. S. Roh and K. J. Lee: J. Powder Mater., 27 (2020) 394.
  15. N. Desai, S. Mali, V. Kondalkar, R. l Mane, C. Hong and P. Bhosale: J. Nanomed. Nanotechnol., 6 (2015) 1000338.
  16. J. Dang, G. Zhang and K. Chou: HTMP., 33 (2014) 305.
  17. B. D Cullity, Elements of X - ray Diffraction, 2nd edAddison Wesley, (1978)
  18. Y. Qing, K. Yang, Y. Chen, J. Zhu, Y. Li, C. Chen, Q. Li, B. Sun and J. He: Materials., 16 (2023) 2841.