Browse > Article
http://dx.doi.org/10.4150/KPMI.2009.16.6.431

Effects of Chemical Composition and Particle Size of Starting Aluminum Source on the Spheroidization in the Flame Fusion Process  

Eom, Sun-Hui (Whiteware Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
Pee, Jae-Hwan (Whiteware Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
Lee, Jong-Keun (DaeHan Ceramics Co., Ltd.)
Hwang, Kwang-Taek (Whiteware Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
Cho, Woo-Seok (Whiteware Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
Kim, Kyeong-Ja (Whiteware Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
Publication Information
Journal of Powder Materials / v.16, no.6, 2009 , pp. 431-437 More about this Journal
Abstract
Various inorganic fillers improve the thermal conductivity and physical properties of organic products. Alumina has been used a representative filler in the heat radiation sheet for the heat radiation of electric device. The high filling rate of alumina increases the thermal conductivity and properties of products. We successfully developed the spherical alumina by flame fusion process using the oxygen burner with LPG fuel. In the high temperature flame (2500$\sim$3000$^{\circ}C$) of oxygen burner, sprayed powders were melting and then rotated by carrier gas. This surface melting and rotation process made spherical alumina. Especially effects of chemical composition and particle size of stating materials on the melting behavior of starting materials in the flame and spheroidization ratio were investigated. As a result, spheroidization ratio of boehmite and aluminum hydroxide with endothermic reaction of dehydration process was lower than that of the sintered alumina without dehydration reaction.
Keywords
Flame fusion; Oxygen burner; Spheroidization; ${\alpha}-Al_2O_3$; Melting behavior;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. C. Sim, S. R. Ramanan, H. Ismail, K. N. Seetharamu and T. J. Goh: Thermochim. Acta., 430 (2005) 155   DOI   ScienceOn
2 Y. He, B. E. Moreira, A, Overson, S. H. Nakamura, C. Bider and J. F. Briscoe: Thermochim. Acta., 357-358 (2000) 1   DOI   ScienceOn
3 R. Viswanath, V. Wakharkar, A. Watwe and V. Lebonheur: Intel Technol. J. Q., 3 (2000) 1
4 X. Yunsheng, L. Xiangcheng and D. D. L. Chung: J. Electron. Packag., 124 (2002) 188   DOI   ScienceOn
5 E. G. Wolff and D. A. Schneider: Int. J. Heat Mass Transfer., 41 (1998) 3469   DOI   ScienceOn
6 X. Yunsheng, L. Xiangcheng and D. D. L. Chung: J. Electron. Packag., 122 (2000) 128   DOI   ScienceOn
7 C. K. Leong and D. D. L. Chung: Carbon., 41 (2003) 2459   DOI   ScienceOn
8 Y. He: Thermochim. Acta. 392 (2002) 13   DOI   ScienceOn
9 L. L. Cesar de faria Jr., K. R. Tania de Oliveira, L. Vera dos Santos, C. A. Rosa, J. D. Ardisson, A. Waldemar de Almeida Macedo and A. Santos: Microporous Mesoporous Mater., 120 (2009) 228   DOI   ScienceOn
10 Genoveva Buelna and Y.S.Lin: J. Microporous Mesoporous Mater., 30 (1999) 359   DOI   ScienceOn
11 M. Mofazzal Hossain, Yaochun Yao, Takayuki Watanabe, Fuji Funabiki and Tetsuji Yano: Chem. Eng. J., 150 (2009) 561   DOI   ScienceOn
12 S. G. Deng and Y. S. Lin: AIChE J., 43 (1998) 505
13 Z. W. Wang and Y. S. Lin: J.Catal., 174 (1998) 43   DOI   ScienceOn
14 J.T. Feng, Y. J. Lin, F. Li, D. G. Evans and D. Q. Li: Appl. Catal. A., 329 (2007) 112   DOI   ScienceOn
15 T. Hyodo, M. Murakami, Y. Shimizu and M. Egashira: J. Eur. Ceram. Soc., 25 (2005) 3563   DOI   ScienceOn
16 S. Kumar, V. Selvarajan, P. V. A. Padmanabhan and K.P. Sreekumar: J. Mater. Process. Technol., 176 (2006) 87   DOI   ScienceOn
17 M. Li and P. D. Christofides: Chem. Eng. Sci., 61 (2006) 6540   DOI   ScienceOn
18 N. K. Miller Jothi, G. Magarajan and S.Renganarayanan: Int. J. Therm. Sci., 47 (2008) 450   DOI   ScienceOn
19 S. Kotake and K. Takamoto: J. Sound.Vib., 112 (1987) 345   DOI   ScienceOn
20 Han S. Kim, Vaibhav K. Arghode and Ashwani K. Gupta: Int. J. Hydrogen. Energ., 34 (2009) 1045   DOI   ScienceOn