Browse > Article
http://dx.doi.org/10.12656/jksht.2020.33.3.99

Influence of Hot Isostatic Press on Quasi-static and Dynamic Mechanical Properties of SLM-printed Ti-6Al-4V Alloy  

Jang, Ji-Hoon (Materials Metallurgical Engineering, Sunchon National University)
Choi, Young-Sin (Materials Metallurgical Engineering, Hanyang University)
Kim, Hyeoung-Kyun (Gangwon Regional Division, Korea Institute of Industrial technology)
Lee, Dong-Geun (Materials Metallurgical Engineering, Sunchon National University)
Publication Information
Journal of the Korean Society for Heat Treatment / v.33, no.3, 2020 , pp. 99-106 More about this Journal
Abstract
Selective laser melting (SLM) is an additive manufacturing process by melting metallic powders and stacking into layers, and can product complex shapes or near-net-shape (NNS) that are difficult to product by conventional processes. Also, SLM process is able to raise the efficiency of production by creating a streamlined manufacturing process. For manufacturing in SLM process using Ti-6Al-4V powder, analysis of microstructural evolution and evaluation of mechanical properties are essential because of rapid melting and solidification process of powders according to high laser power and rapid scan speed. In addition, it requires a post-processing because the soundness and mechanical properties are degraded by defects such as pore, un-melted powder, lack-of-fusion, etc. In this study, hot isostatic press (HIP) was conducted as a post-processing on SLM-printed Ti-6Al-4V alloy. Microstructure of post-processed Ti-6Al-4V alloy was compared to as-built Ti-6Al-4V, and the evolution of quasi-static (Vickers hardness, room temperature tensile characteristic) and dynamic (high-cycle fatigue characteristic) mechanical properties were analyzed.
Keywords
Additive manufacturing; Selective laser melting; Ti-6Al-4V; Hot isostatic press; Mechanical property;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Banerjee and J. C. Williams : Acta. Mater. 61 (2013) 844.   DOI
2 M. Geetha, A. K. Singh, R. Asokamani and A. K. Gogia : Prog. Mater. Sci. 54 (2009) 397.   DOI
3 M. A. H. Gepreel and M. Niinomi : J. Mech. Behav. Biomed. Mater. 20 (2013) 407.   DOI
4 K. G. Prashanth, S. Scudino, H. J. Klauss, K. B. Surreddi, L. Lober, Z. Wang, A. K. Chaubey, U. Kuhn and J. Eckert : Mater. Sci. Eng. A A590 (2014) 153.
5 L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck and J. P. Kruth : Acta Mater 58 (2010) 3303.   DOI
6 L. C. Zhang, D. Klemm, J. Eckert, Y. L. Hao and T. B. Sercombe : Scr. Mater. 65 (2011) 21.   DOI
7 D. D. Gu, W. Meiners, K. Wissenbach and R. Poprawe : Int. Mater. Rev. 57 (2012) 133.   DOI
8 G. N. Levy, R. Schindel and J. P. Kruth : CIRP Ann. Manuf. Technol. 52 (2003) 589.   DOI
9 B. Zhang, Y. Li and Q. Bai : Chin. J. Mech. Eng. 30 (2017) 515.   DOI
10 S. Shrestha, T. Starr and K. Chou : J. Manuf. Sci. Eng. 141 (2019) 1.   DOI
11 Y. S. Choi, J. H. Jang, K. H. Kim, C. W. Lee, H. J. Kim and D. G. Lee : J. Korean Powder Metall. Inst. 25 (2018) 340.   DOI
12 L. C. Zhang and H. Attar : Adv. Eng. Mater. 18 (2016) 463.   DOI
13 M. J. Ansari, D. S. Nguyen and H. S. Park : Materials 12 (2019) 1272.   DOI
14 H. Matsumoto, K. Kodaira, K. Sato, T. J. Konno and A. Chiba : Mater. Trans. 50 (2009) 2744.   DOI
15 F. X. Gil Mur, D. Rodriguez and J. A. Planell : J. Alloys Compd. 234 (1996) 287.   DOI
16 M. A. Imam and C. M. Gilmore : Metall. Trans. A 14 (1983) 233.   DOI
17 G. Kasperovich and J. Hausmann : J. Mater. Process. Technol. 220 (2015) 202.   DOI