• Title/Summary/Keyword: potential function

Search Result 3,086, Processing Time 0.046 seconds

The effect of small forward speed on prediction of wave loads in restricted water depth

  • Guha, Amitava;Falzarano, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.6 no.4
    • /
    • pp.305-324
    • /
    • 2016
  • Wave load prediction at zero forward speed using finite depth Green function is a well-established method regularly used in the offshore and marine industry. The forward speed approximation in deep water condition, although with limitations, is also found to be quite useful for engineering applications. However, analysis of vessels with forward speed in finite water depth still requires efficient computing methods. In this paper, a method for analysis of wave induced forces and corresponding motion on freely floating three-dimensional bodies with low to moderate forward speed is presented. A finite depth Green function is developed and incorporated in a 3D frequency domain potential flow based tool to allow consideration of finite (or shallow) water depth conditions. First order forces and moments and mean second order forces and moments in six degree of freedom are obtained. The effect of hull flare angle in predicting added resistance is incorporated. This implementation provides the unique capability of predicting added resistance in finite water depth with flare angle effect using a Green function approach. The results are validated using a half immersed sphere and S-175 ship. Finally, the effect of finite depth on a tanker with forward speed is presented.

Evaluation of the Function exp$(x^2)$ erfc(x) to Higher Precisions for Higher Order Derivative Polarography of CE-type Electrode Process

  • Kim, Myung-Hoon;Smith, Veriti P.;Hong, Tae-Kee
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.6
    • /
    • pp.497-505
    • /
    • 1990
  • The function exp$(x^2)$erfc(x), which is often encountered in studies of electrode kinetics, is evaluated to an extended precision with 32 significant decimal digits in order to find theoretical relationships used in derivative polarography/voltammetry for a chemically-coupled electrode process. Computations with a lower precision are not successful. Evaluation of the function is accomplished by using three types of expansions for the function. Best ranges of arguments are selected for each equation for particular precisions for efficiencies. The method is successfully applied to calculate higher-order derivatives of the current-potential curves in all potential ranges for a reversible electron transfer reaction coupled with a prior chemical equilibrium (i.e., a CE type process). Various parameters that characterize the peak asymmetry (such as ratios of peak-heights, ratios of half-peak-widths, and separations in peak-potentials) are analyzed to find how kinetic and thermodynamic parameters influence shapes of the derivatives. The results from the CE process is compared with those from an EC process in which a reversible electron transfer is coupled with a follow-up homogeneous chemical reaction. The two processes exibit quite contrasting differences for values of the parameters.

Analysis of Threshold Voltage Roll-Off and Drain Induced Barrier Lowering in Junction-Based and Junctionless Double Gate MOSFET (접합 및 무접합 이중게이트 MOSFET에 대한 문턱전압 이동 및 드레인 유도 장벽 감소 분석)

  • Jung, Hak Kee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.2
    • /
    • pp.104-109
    • /
    • 2019
  • An analytical threshold voltage model is proposed to analyze the threshold voltage roll-off and drain-induced barrier lowering (DIBL) for a junction-based double-gate (JBDG) MOSFET and a junction-less double-gate (JLDG) MOSFET. We used the series-type potential distribution function derived from the Poisson equation, and observed that it is sufficient to use n=1 due to the drastic decrease in eigenvalues when increasing the n of the series-type potential function. The threshold voltage derived from this threshold voltage model was in good agreement with the result of TCAD simulation. The threshold voltage roll-off of the JBDG MOSFET was about 57% better than that of the JLDG MOSFET for a channel length of 25 nm, channel thickness of 10 nm, and oxide thickness of 2 nm. The DIBL of the JBDG MOSFET was about 12% better than that of the JLDG MOSFET, at a gate metal work-function of 5 eV. It was also found that decreasing the work-function of the gate metal significantly reduces the DIBL.

Analysis of Channel Doping Profile Dependent Threshold Voltage Characteristics for Double Gate MOSFET (이중게이트 MOSFET에서 채널도핑분포의 형태에 따른 문턱전압특성분석)

  • Jung, Hak-Kee;Han, Ji-Hyung;Lee, Jae-Hyung;Jeong, Dong-Soo;Lee, Jong-In;Kwon, Oh-Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.6
    • /
    • pp.1338-1342
    • /
    • 2011
  • In this paper, threshold voltage characteristics have been analyzed as one of short channel effects occurred in double gate(DG)MOSFET to be next-generation devices. The Gaussian function to be nearly experimental distribution has been used as carrier distribution to solve Poisson's equation, and threshold voltage has been investigated according to projected range and standard projected deviation, variables of Gaussian function. The analytical potential distribution model has been derived from Poisson's equation, and threshold voltage has been obtained from this model. Since threshold voltage has been defined as gate voltage when surface potential is twice of Fermi potential, threshold voltage has been derived from analytical model of surface potential. Those results of this potential model are compared with those of numerical simulation to verify this model. As a result, since potential model presented in this paper is good agreement with numerical model, the threshold voltage characteristics have been considered according to the doping profile of DGMOSFET.

Analysis for Potential Distribution of Asymmetric Double Gate MOSFET (비대칭 이중게이트 MOSFET의 전위분포 분석)

  • Jung, Hakkee;Lee, Jongin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.691-694
    • /
    • 2013
  • This paper has presented the potential distribution for asymmetric double gate(DG) MOSFET, and sloved Poisson equation to obtain the analytical solution of potential distribution. The symmetric DGMOSFET where both the front and the back gates are tied together is three terminal device and has the same current controllability for front and back gates. Meanwhile the asymmetric DGMOSFET is four terminal device and can separately determine current controllability for front and back gates. To approximate with experimental values, we have used the Gaussian function as charge distribution in Poisson equation. The potential distribution has been observed for gate bias voltage and gate oxide thickness and channel doping concentration of the asymmetric DGMOSFET. As a results, we know potential distribution is greatly changed for gate bias voltage and gate oxide thickness, especially for gate to increase gate oxide thickness. Also the potential distribution for source is changed greater than one of drain with increasing of channel doping concentration.

  • PDF

THE ZETA-DETERMINANTS OF HARMONIC OSCILLATORS ON R2

  • Kim, Kyounghwa
    • Korean Journal of Mathematics
    • /
    • v.19 no.2
    • /
    • pp.129-147
    • /
    • 2011
  • In this paper we discuss the zeta-determinants of harmonic oscillators having general quadratic potentials defined on $\mathbb{R}^2$. By using change of variables we reduce the harmonic oscillators having general quadratic potentials to the standard harmonic oscillators and compute their spectra and eigenfunctions. We then discuss their zeta functions and zeta-determinants. In some special cases we compute the zeta-determinants of harmonic oscillators concretely by using the Riemann zeta function, Hurwitz zeta function and Gamma function.

FURTHER LOG-SINE AND LOG-COSINE INTEGRALS

  • Choi, Junesang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.4
    • /
    • pp.769-780
    • /
    • 2013
  • Motivated essentially by their potential for applications in a wide range of mathematical and physical problems, the log-sine and log-cosine integrals have been evaluated, in the existing literature on the subject, in many different ways. Very recently, Choi [6] presented explicit evaluations of some families of log-sine and log-cosine integrals by making use of the familiar Beta function. In the present sequel to the investigation [6], we evaluate the log-sine and log-cosine integrals involved in more complicated integrands than those in [6], by also using the Beta function.

Binding Energy in the n-type Al2Gax-1A3-GaAs Quantum well according to the Trial function (Al2Gax-1A3-GaAs 양자우물에서 시도함수에 따른 결합에너지)

  • Lee, Kun-Young;Lee, Mu-Sang;Chun, Sang-Kook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.9
    • /
    • pp.781-786
    • /
    • 2005
  • The binding energy in the n-type $GaAs/Al_xGa_{1-x}As$ quantum well is calculated. The shooting method, modified from the finite difference method, is used for the calculation of the subband energy level and its wave function. In order to account tot the change of the potential energy due to the charged particles, impurities and electrons, the self consistent method is employed. The wave function used for the calculation of the binding energy is assumed to be composed of the envelope function and hydrogenic 1s function. Then, the binding energies calculated by taking into account lot two different types of the hydrogenic 1s function are compared.

Application of Hypothetical Quantum Scattering Model for the Design of Novel Electroluminescence Device

  • Jang, Hyo-Weon
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.807-811
    • /
    • 2002
  • We present a hypothetical quantum scattering model to propose a novel electroluminescence device. Adoping with features of solid state semiconductor LED and exciplex laser, the cathode (electrol incoming potential) and anode(electron outgoing potential) are made to correspond to two 1-dimensional resonance supporting potentials, and the light emitting part to an interaction potential in the intermediate region. When an external voltage is applied, the electron flows into the cathode having small work function. Subsequently in flows via LUMO of the " electron incoming potential" loses kinetic energy emitting a photon, then continues to flow via LUMO of the "electron outgoing potential" unlike the conventional LUMO to HOMO transitions occurring in solid state semiconductor LED. In this model, the photon frequency can be controlled by adijusting the applied voltage. The model hopefully could be realized as partially conjugated hydrocarbon chains.