• Title/Summary/Keyword: potato plant

Search Result 906, Processing Time 0.034 seconds

High Occurrence Conditions of Hollow Heart and Internal Brown Spot in Potatoes (Solanum tuberosum L.) (내부갈색반점(內部褐色斑點)과 내부공동(內部空洞) 저항성(抵抗性) 감자 계통 선발을 위한 다발성(多發生) 조건 구명(究明))

  • Lim, Hak-Tae;Khu, Dong-Man;Chun, Ik-Jo;Yang, Sung-Ji
    • Horticultural Science & Technology
    • /
    • v.19 no.4
    • /
    • pp.455-458
    • /
    • 2001
  • To screen potato clones with high resistance to hollow heart (HH) and internal brown spot (IBS), field conditions were set up to induce high frequencies of physiological disorders in 'Atlantic' potato through various treatments of mulching, periodic shadings, and plant growth regulators such as trinexapac-ethyl (Tr-E) and dicloprop-triethanol mine (DTA). IBS occurrence was as high as 67.5% in the field plot mulched with transparent film and shaded for 10 days beginning at 80 days after planting. The highest level of HH was 22.9% in the plot mulched with transparent film and shaded for 10 days beginning at 60 days after planting. Very high level of IBS (66.3%) also occurred in the plot treated with 1500 mg/L of Tr-E 40 days after planting, while HH occurred by 21.3% in the plot treated with 1000 mg/L of DTA 70 days after planting. In the plots which were treated with 1,500 mg/L of Tr-E after 40 days of planting and 1000 mg/L of DTA after 70 days of planting, 'Superior' (moderately highly resistant) and 'Atlantic' (very susceptible) could be clearly distinguished to be resistant and susceptible. High occurrence condition set up in this study could be applied for the potato breeding program to screen potato clones with high resistance to HH and IBS.

  • PDF

Interactions Between Leafminer Damage and Leaf Necrosis Caused by Alternaria alternata on Potato in the Sultanate of Oman

  • Deadman, M.L.;Khan, I.A.;Thacker, J.R.M.;Al-Habsi, K.
    • The Plant Pathology Journal
    • /
    • v.18 no.4
    • /
    • pp.210-215
    • /
    • 2002
  • Four field experiments were carried out from 1998 to 1999 and from 1999 to 2000 growing seasons of potato to investigate the relationship between leafminers and Alternaria alternata. The experiments established differential susceptibility among potato varieties to alternaria leaf necrosis, relationship between leafminer infestation and the level of necrosis, use of insecticides to reduce leafminer and leaf necrosis damages, and use of polyester fleece to eliminate leafminer and eventually reduce leaf necrosis. Results of the study indicate that control of leafminer is of primary importance because this will automatically lead to control of the damage caused by A. alternata.

On Selection of Resistant Potato Cultivars to Common Scab(S. scabies) (감자 더뎅이병 저항성 품종 선발)

  • Hong, Soon-Yeong;Kang, Yong-Kil;Hahm, Young-Il
    • Research in Plant Disease
    • /
    • v.10 no.2
    • /
    • pp.135-137
    • /
    • 2004
  • It was conducted to select the resistant potato cultivars to common scab, to replace the existing susceptible cv Dejima in Jeju island conditions both 1997 and 2001. Among cultivars, cvs Jemchip, Alpa, Atlantic and Jopung were more resistant than others in the field with both low and high incidence of the disease. Also among the existing cultivars grown in Korea, cvs Superior, Jopung and Chubaek were resistant, expecially in terms of production of marketable potatoes.

Introduction of VP6 Gene into Potato Plant by Agrobacterium-mediated Transformation and Analysis of VP6 Expression in Transgenic Potatoes (Rotavirus VP6 유전자의 감자식물체내로의 도입과 형질전환체의 발현분석)

  • Youm, Jung-Won;Jeon, Jae-Heung;Jung, Jae-Yeol;Lee, Byoung-Chan;Kang, Won-Jin;Kim, Mi-Sun;Kim, Chul-Joong;Joung, Hyouk;Kim, Hyun-Soon
    • Journal of Plant Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.93-98
    • /
    • 2002
  • A VP6 fragments was subcloned with BamHI in the binary pMBP-1 vector under Califlower Mosaic Virus (CaMV) 355 promoter and neomycin phosphotransferase II (npt II) gene. The recombinant binary vector was mobilized into Agrobacterium-tumefaciens LBA4404 by the freeze-thaw method and potato (Solanum tubensum L. cv Desiree) was transformed by modified leaf-disc cocultivation. Shoots were induced on MS medium with 0.01 mg/L NAA, 0.1 mg/L GA$_3$, 2.0 mg/L Zeatin, 100.0 mg/L kanamycin, 500.0 mg/L carbenicillin. In order to identify the copy number of VP6 into potato plant, total genomic DNA was isolated from transgenic potato and analysed by Southern blotting. Genomic DNA and total mRNA analysis demonstrated the incorporation of the foreign gene into the potato genome, as well as their transcription.

An efficient transformation method for a potato (Solanum tuberosum L. var. Atlantic)

  • Han, Eun-Hee;Goo, Young-Min;Lee, Min-Kyung;Lee, Shin-Woo
    • Journal of Plant Biotechnology
    • /
    • v.42 no.2
    • /
    • pp.77-82
    • /
    • 2015
  • We found that a long period of in vitro culture is a critical factor on the low transformation rate for a specific potato genotype, Solanum tuberosum L. var. Atlantic when phosphinothricin (PPT) was added to select putative transformants in a solid media. The fresh explants of the newly produced plants from a micro-tuber was able to increase the transformation rate significantly while the old explants prepared from a plant maintained for longer than 6 months in vitro by sub-culturing every 3 ~ 4 weeks resulted in a very low transformation frequency. However, Jowon cultivar was not so much influenced by the period of in vitro culture with high transformation rate (higher than 10.0%). Further research need to be explored for the reason why a particular potato genotype, Atlantic is more vulnerable than the Jowon cultivar during the regeneration stage resulting in the low transformation frequency.

Production of transgenic potato exhibiting enhanced resistance to fungal infections and herbicide applications

  • Khan, Raham Sher;Sjahril, Rinaldi;Nakamura, Ikuo;Mii, Masahiro
    • Plant Biotechnology Reports
    • /
    • v.2 no.1
    • /
    • pp.13-20
    • /
    • 2008
  • Potato (Solanum tuberosum L.), one of the most important food crops, is susceptible to a number of devastating fungal pathogens in addition to bacterial and other pathogens. Producing disease-resistant cultivars has been an effective and useful strategy to combat the attack of pathogens. Potato was transformed with Agrobacterium tumefaciens strain EHA101 harboring chitinase, (ChiC) isolated from Streptomyces griseus strain HUT 6037 and bialaphos resistance (bar) genes in a binary plasmid vector, pEKH1. Polymerase chain reaction (PCR) analysis revealed that the ChiC and bar genes are integrated into the genome of transgenic plants. Different insertion sites of the transgenes (one to six sites for ChiC and three to seven for bar) were indicated by Southern blot analysis of genomic DNA from the transgenic plants. Expression of the ChiC gene at the messenger RNA (mRNA) level was confirmed by Northern blot analysis and that of the bar gene by herbicide resistance assay. The results obviously confirmed that the ChiC and bar genes are successfully integrated and expressed into the genome, resulting in the production of bialaphos-resistant transgenic plants. Disease-resistance assay of the in vitro and greenhouse-grown transgenic plants demonstrated enhanced resistance against the fungal pathogen Alternaria solani (causal agent of early blight).

Potato breeding via protoplast fusion (원형질체 융합을 이용한 감자 육종)

  • Cho, Kwang-Soo;Park, Tae-Ho
    • Journal of Plant Biotechnology
    • /
    • v.41 no.2
    • /
    • pp.65-72
    • /
    • 2014
  • Plant cells from which the cell walls have been enzymatically or mechanically removed are called protoplasts. The protoplasts are theoretically totipotent and can be used as sources of somatic cell fusion in practical breeding programs. Wild Solanum species have often been used as sources of important agricultural traits including diverse disease resistance. However, they cannot often be directly applied to breeding programs due to their sexual incompatibility with S. tuberosum. Somatic hybridization via protoplast fusion is one of the ideal methods to overcome this limitation and to introgress certain traits into S. tuberosum. This technique has still widely been used in potato since the first fusion was reported in 1970s. Therefore, this review highlights general perspectives of protoplast fusion and discusses the application of protoplast fusion in potato breeding.

Ribavirin, Electric Current, and Shoot-tip Culture to Eliminate Several Potato Viruses

  • Yi Jung-Yoon;Seo Hyo-Won;Choi Young-Moo;Park Young-Eun
    • Journal of Plant Biotechnology
    • /
    • v.5 no.2
    • /
    • pp.101-105
    • /
    • 2003
  • To eradicate several viruses such as PVX, PVY, and PLRV which often cause considerable damages to the growth and yields of potatoes, several stems including shoot tips were excised from the potato plants grown for 50 days and electric shock was treated. Shoot tips excised from electric-shocked stems were transferred into the medium supplemented with antiviral compound, ribavirin to examine the combinatorial effect. When treated only with 20 mg/L ribavirin, PVX concentration in the regenerated plant-lets was slowly decreased as repeating sub-culture and finally, it took 32 weeks to reach completely PVX-free stock. With an electric shock treatment (10 mA electric current), all the replicates became free from PVY. However, PLRV was not completely eradicated from 94P70-4 and 93P29-3 lines even by treating with 10 mA electric shock. In this case, both electric shock and antiviral compound treatments in axillary buds from the stem segment were successful in eradicating viral contamination.

3-Methylthiopropionic Acid of Rhizoctonia solani AG-3 and Its Role in the Pathogenicity of the Fungus

  • Kankam, Frederick;Long, Hai-Tao;He, Jing;Zhang, Chun-hong;Zhang, Hui-Xiu;Pu, Lumei;Qiu, Huizhen
    • The Plant Pathology Journal
    • /
    • v.32 no.2
    • /
    • pp.85-94
    • /
    • 2016
  • Studies were conducted to determine the role of 3-methylthioproprionic acid (MTPA) in the pathogenicity of potato stem canker, Rhizoctonia solani, and the concentrations required to inhibit growth of R. solani under laboratory and plant house-based conditions. The experiments were laid out in a completely randomized design with five treatments and five replications. The treatments were 0, 1, 2, 4, and 8 mM concentrations of MTPA. The purified toxin exhibited maximal activity at pH 2.5 and $30^{\circ}C$. MTPA at 1, 2, 4, and 8 mM levels reduced plant height, chlorophyll content, haulm fresh weight, number of stolons, canopy development, and tuber weight of potato plants, as compared to the control. MTPA significantly affected mycelial growth with 8 mM causing the highest infection. The potato seedlings treated with MTPA concentrations of 1.0-8.0 mM induced necrosis of up to 80% of root system area. Cankers were resulted from the injection of potato seedling stems with 8.0 mM MTPA. The results showed the disappearance of cell membrane, rough mitochondrial and cell walls, change of the shape of chloroplasts, and swollen endoplasmic reticulum. Seventy-six (76) hours after toxin treatment, cell contents were completely broken, cytoplasm dissolved, and more chromatin were seen in the nucleus. The results suggested that high levels of the toxin concentration caused cell membrane and cytoplasm fracture. The integrity of cellular structure was destroyed by the phytotoxin. The concentrations of the phytotoxin were significantly correlated with pathogenicity and caused damage to the cell membrane of potato stem base tissue.

Plant growth promoting rhizobacteria influence potato tuberization through enhancing lipoxygenase activity

  • Akula, Nookaraju;Upadhyaya, Chandrama P.;Kim, Doo-Hwan;Chun, Se-Chul;Park, Se-Won
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2010.10a
    • /
    • pp.18-18
    • /
    • 2010
  • Molecular insights on the role of plant growth promoting rhizobacteria (PGPR) in potato tuberization are reported in the present study. The PGPRwere isolated from the soil collected from potato fields of Highland Agricultural Research Centre, Pyeongchang, Korea and they were identified to the genus level based on the 16S rRNA sequence analysis. These PGPR were heat-killed, filtered and the filtrates were addedindividually at a concentration of $10^7\;cfu\;mL^{-1}$ in MS (Murashige and Skoog's) medium supplemented with 7% (w/v) sucrose to study their influence on in vitro potato tuberization. Tuber initiation occurred early in untreated control, while tuber growth was pronounced in case of PGPR treatments. The control explants showed tuber formation as a result of sub-apical swelling of stolons while several sessile tubers formed directly in the axils of nodal cuttings in case of PGPR treatments, which is an indication of strong induction for tuberization. Theexplants cultured on MS medium supplemented with bacterial isolate 6 (Bacillus firmus strain 40) showed highest average tuber yield (Ca. 12.56 g per treatment) after 30 days of culture, which was 3 folds increase over the untreated control. A significant increase in lipoxygenase (LOX1) mRNA expression and activity of LOX enzyme were also detected in the tubers induced on PGPR treatments as compared to untreated control. This LOX expression level correlated with increased tuber growth and tuber yield. Further studies focused on the role of bacteria cell wall components, growth regulators and signal molecules released by PGPR are under investigation to elicit clues for PGPR-mediated signal pathway controlling potato tuberization.

  • PDF