• Title/Summary/Keyword: post-buckling loads

Search Result 55, Processing Time 0.034 seconds

Buckling Analysis of the Large Span Spatial Structures by Modal Analysis (Modal Analysis법에 의한 무주대공간 구조물의 좌굴해석)

  • 한상을;권택진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.195-201
    • /
    • 1996
  • This paper is mainly forcused on the application of modal analysis In analyze the geometrically non-linear buckling behaviors of large span spatial structures, and the evaluation of each eigen mode affected post-buckling behaviors and buckling loads. Modal analysis is applied . to derivation of the system matrices transforming actual displacement space into generalized coordinates space represented by coefficients multiplied in the linear combination of eigen modes which are independent and orthogonal each other. By using modal analysis method, it will be expected to save the calculating time by computer extremely. For example, we can obtain the satisfactorily good results by using about 7% of total eigen modes only in case of single layer latticed dome. And we can decrease the possibility of divergence on the bifurcation point in the calculation of post-buckling path. Arc-length method and Newton-Raphson iteration method are used to calculate the nonlinear equilibrium path.

  • PDF

Elastoplastic nonlinear behavior of planar steel gabled frame

  • Moghaddam, Sina Heyrani;Masoodi, Amir R.
    • Advances in Computational Design
    • /
    • v.4 no.4
    • /
    • pp.397-413
    • /
    • 2019
  • In this paper, static nonlinear analysis of gable frame is performed using OpenSees software. Both geometric and material nonlinearities are considered in analyses. To consider large displacements, co-rotational coordinate transformation is used in software. The effects of symmetric and asymmetric support conditions including clamped and simple supports are studied. On the other hand, the material nonlinearity is reflected on analyses using Giuffre-Menegotto-Pinto steel material. Note that strain hardening characteristics are also considered in this model. Moreover, I-shaped cross-section is assumed for all members. The results are provided for different geometry properties of gable frame including shallow and deep inclined roof. It should be added that buckling and post-buckling behaviors of gable frame are investigated using related equilibrium paths. A comparison study is also implemented on the responses of buckling loads obtained for different support and geometry conditions. To trace snap-through paths completely, a displacement control method entitled arc-length is utilized. Findings show the capability of proposed model in nonlinear analysis of gable frames.

The study on the buckling instability of tube type crash energy absorber (튜브형 충돌에너지흡수부재의 좌굴불안전성에 대한 연구)

  • Choi, Won-Mok;Jung, Hyun-Sung;Kwon, Tae-Su
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1564-1570
    • /
    • 2007
  • There are normally two types of the energy absorbers used in the crashworthiness of trains. The first is a structure type, which mainly used in not only the primary structures of the train but also the crash energy absorbers at the accident. The second is a module type, which just absorbs the crash energy independent of the primary structures and attached to the structures of the train. The expansion and inversion tube are widely used as the module type crash energy absorbers, especially in the train. The tubes should not be buckled under the load acting on the end of the tube in longitudinal direction during absorbing the crash energy. The buckling stability of the tubes is affected by the boundary conditions, thickness and length of tube. In this study, the effects of the length and thickness of the tubes on the buckling load are studied by using the ABAQUS, a commercial finite element analysis program, and then presents the guideline to design the tube. The analysis processes to compute the buckling load consist of a linear buckling analysis and a nonlinear post-buckling analysis. The buckling modes are evaluated by the linear buckling analysis, as using these modes, the buckling loads are computed by the nonlinear post-buckling analysis.

  • PDF

A Design and Structural Analysis of the Superconducting Magnet Supporting Post (초전도자석 지지각 설계 및 구조해석)

  • 허남일;도철진;사정우;조승연;임기학;KSTAR설계팀
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.115-118
    • /
    • 2000
  • The superconducting magnet supporting post of the KSTAR system is a flexible structure that absorbs thermal shrink of the superconducting magnet and also a rigid structure that supports the weight of the magnet and dynamic loads. In this work, a structural analyses for the post under the loads were performed. As a result, it turns out that the post would be safe when it is exposed to the loads, such as magnet weight, thermal contraction, and plasma vertical disruption load. And, Buckling and modal analysis results of the post are presented.

  • PDF

Buckling Loads and Post-Buckling Behaviors of Shear Deformable Columns with Regular Cross-Section (전단변형을 고려한 정다각형 단면 기둥의 좌굴하중 및 후좌굴 거동)

  • Lee, Byeoung Koo;Lee, Tae Eun;Kwon, Yun Sil;Kim, Sun Gi
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.6
    • /
    • pp.683-691
    • /
    • 2001
  • Numerical methods are developed for solving the elastica and buckling load of tapered columns with shear deformation, subjected to a compressive end load. The linear, parabolic and sinusoidal tapers with the regular polygon cross-sections are considered, whose material volume and span length are always held constant. The differential equations governing the elastica of buckled column are derived. The Runge-Kutta method is used to integrate the differential equations, and the Regula-Falsi method is used to determine the rotation at left end and the buckling load, respectively. The numerical methods developed herein for computing the elastica and the buckling loads of the columns are found to be efficient and reliable.

  • PDF

Post-buckling Behavior of Tapered Columns under a Combined Load using Differential Transformation

  • Yoo, Yeong Chan
    • Architectural research
    • /
    • v.8 no.1
    • /
    • pp.47-56
    • /
    • 2006
  • In this research, the analysis of post-buckling behavior of tapered columns has been performed under a combined load of uniformly distributed axial load along the length and concentric axial load at free end by solving the nonlinear differential equation with the differential transformation technique. The buckling load at various slopes at free end of column is calculated and the results of the analysis using the differential transformation technique is verified with those of previous studies. It is also shown through the results that the buckling load of sinusoidal tapered columns is largest, the linear is second largest, and the parabolic is small in the all ranges of slopes at free end and the deflection of parabolic tapered columns in the x coordinates is largest, the sinusoidal is second largest, and the linear is smallest in the range of slope 0 to 140 degrees at free end. However, when the range of the slope is 160 to 176 degrees at the free end, the deflection of sinusoidal tapered columns in the x coordinates is largest, the linear is second largest, and the parabolic is smallest. In addition, for the linear tapered column, the buckling load increases along with the flexural stiffness ratio. Also, for the parabolic and the sinusoidal tapered column, the buckling loads increase and decrease as the flexural ratios increase in the range of flexural stiffness ratio n = 1.0 to n = 2.0. Through this research, it is verified that the differential transformation technique can be applied to solve the nonlinear differential equation problems, such as analysis of post-buckling behavior of tapered columns. It is also expected that the differential transformation technique apply to various more complicated problems in future.

Buckling resistance of axially loaded square concrete-filled double steel tubular columns

  • Ci, Junchang;Ahmed, Mizan;Tran, Viet-Linh;Jia, Hong;Chen, Shicai;Nguyen, Tan N.
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.689-706
    • /
    • 2022
  • Thin-walled square concrete-filled double steel tubular (CFDST) columns composed of the inner circular tube filled with concrete can be used to carry the large axial loads or strengthen existing CFST columns in composite constructions. This paper reports an experimental program carried out on short square CFDST columns loaded concentrically. The influences of important column parameters on the post-buckling performance of such columns are investigated. Test results exhibit that the inner circular tube significantly improves the ultimate loads and the ductility of such columns compared to conventional concrete-filled steel tubular (CFST) and double-skin CFST (DCFST) columns with an inner void. A mathematical model developed is used to simulate the ultimate strengths and load-strain curves of such columns loaded axially. Furthermore, the ultimate strengths of such columns are predicted using existing codified design models for conventional CFST columns as well as the formulas proposed by previous researchers and compared against a large database comprising 500 CFDST columns. Lastly, an accurate artificial neural network model is developed for the practical applications of such columns under axial loading.

Thermo-mechanical post-buckling behavior of thick functionally graded plates resting on elastic foundations

  • Bakora, Ahmed;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.85-106
    • /
    • 2015
  • Postbuckling of thick plates made of functionally graded material (FGM) subjected to in-plane compressive, thermal and thermomechanical loads is investigated in this work. It is assumed that the plate is in contact with a Pasternak-type elastic foundation during deformation. Thermomechanical non-homogeneous properties are considered to be temperature independent, and graded smoothly by the distribution of power law across the thickness in the thickness in terms of the volume fractions of constituents. By employing the higher order shear deformation plate theory together the non-linear von-Karman strain-displacement relations, the equilibrium and compatibility equations of imperfect FGM plates are derived. The Galerkin technique is used to determine the buckling loads and postbuckling equilibrium paths for simply supported plates. Numerical examples are presented to show the influences of power law index, foundation stiffness and imperfection on the buckling and postbuckling loading capacity of the plates.

Post-buckling of Non-uniform Cantilever Column Subjected to a Combined Load (결합하중을 받는 임의단면 기둥의 좌굴후 해석)

  • Shin, Young-Jae;Chiba, Masakatsu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.5
    • /
    • pp.323-329
    • /
    • 2002
  • This paper presents the application of the technique of differential transformation to the post-buckling problem of non-uniform cantilever column subjected to a combined load. Numerical calculations are carried out and compared with previously published results to validate the results of the present method. The results obtained by this method agree very well with those reported in the previous works. The results obtained by the present method are presented for both various non-uniform columns and loads.

An exact finite strip for the calculation of relative post-buckling stiffness of isotropic plates

  • Ovesy, H.R.;Ghannadpour, S.A.M.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.2
    • /
    • pp.181-210
    • /
    • 2009
  • This paper presents the theoretical developments of an exact finite strip for the buckling and initial post-buckling analyses of isotropic flat plates. The so-called exact finite strip is assumed to be simply supported out-of-plane at the loaded ends. The strip is developed based on the concept that it is effectively a plate. The present method, which is designated by the name Full-analytical Finite Strip Method in this paper, provides an efficient and extremely accurate buckling solution. In the development process, the Von-Karman's equilibrium equation is solved exactly to obtain the buckling loads and the corresponding form of out-of-plane buckling deflection modes. The investigation of thin flat plate buckling behavior is then extended to an initial post-buckling study with the assumption that the deflected form immediately after the buckling is the same as that obtained for the buckling. It is noted that in the present method, only one of the calculated out-of-plane buckling deflection modes, corresponding to the lowest buckling load, i.e., the first mode is used for the initial post-buckling study. Thus, the postbuckling study is effectively a single-term analysis, which is attempted by utilizing the so-called semi-energy method. In this method, the Von-Karman's compatibility equation governing the behavior of isotropic flat plates is used together with a consideration of the total strain energy of the plate. Through the solution of the compatibility equation, the in-plane displacement functions which are themselves related to the Airy stress function are developed in terms of the unknown coefficient in the assumed out-of-plane deflection function. These in-plane and out-of-plane deflected functions are then substituted in the total strain energy expressions and the theorem of minimum total potential energy is applied to solve for the unknown coefficient. The developed method is subsequently applied to analyze the initial postbuckling behavior of some representative thin flat plates for which the results are also obtained through the application of a semi-analytical finite strip method. Through the comparison of the results and the appropriate discussion, the knowledge of the level of capability of the developed method is significantly promoted.