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Abstract 

 

In this research, the analysis of post-buckling behavior of tapered columns has been performed under a combined load of uniformly distributed axial load 
along the length and concentric axial load at free end by solving the nonlinear differential equation with the differential transformation technique. The 
buckling load at various slopes at free end of column is calculated and the results of the analysis using the differential transformation technique is verified with 
those of previous studies. It is also shown through the results that the buckling load of sinusoidal tapered columns is largest, the linear is second largest, and 
the parabolic is small in the all ranges of slopes at free end and the deflection of parabolic tapered columns in the x coordinates is largest, the sinusoidal is 
second largest, and the linear is smallest in the range of slope 0 to 140 degrees at free end. However, when the range of the slope is 160 to 176 degrees at the 
free end, the deflection of sinusoidal tapered columns in the x coordinates is largest, the linear is second largest, and the parabolic is smallest. In addition, for 
the linear tapered column, the buckling load increases along with the flexural stiffness ratio. Also, for the parabolic and the sinusoidal tapered column, the 
buckling loads increase and decrease as the flexural ratios increase in the range of flexural stiffness ratio 0.1=n  to 0.2=n . Through this research, it is 
verified that the differential transformation technique can be applied to solve the nonlinear differential equation problems, such as analysis of post-buckling 
behavior of tapered columns. It is also expected that the differential transformation technique apply to various more complicated problems in future.  
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1. INTRODUCTION  
 
Post-buckling behavior of prismatic column under a 

concentric axial load was analyzed by S. P. Timoshenko and 
J.M. Gere using an elliptical integration, which has a 
governing equation of large deformation1). G. Venkateswara 
Rao and P. C. Raju performed the analysis of post-buckling 
behavior under uniformly loaded columns using a finite 
element method2). For the case of uniformly load along the 
length and concentrically loaded at the free end, K. Lee 
performed the numerical analysis using the Butcher's fifth-
order Runge-Kutta method3). Those studies performed the 
analysis of post-buckling behavior of prismatic columns 
considering only the flexural deformation, not the shear.  

In addition, Y.C. Yoo performed the numerical analysis of 
post-buckling behavior of prismatic columns under a 
combined load of uniformly distributed axial load along the 
length and concentric axial load at free end using the 
differential transformation considering not only flexural 
deformation but also shear deformation4).  
--------------------------------------------------------------------------------- 
* Corresponding author  
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Previous studies stated above performed the analysis of 
post-buckling behavior of only prismatic columns, not 
tapered columns considering flexural deformation, or 
considering not only flexural deformation but also shear 
deformation.  

Current research investigates the post-buckling behavior 
and buckling load of tapered columns under a combined 
load of uniformly distributed axial load along the length and 
concentric axial load at free end using the nonlinear 
differential equation and differential transformation.  

 
 
2. GOVERNING EQUATIONS  
 
As shown in Fig. 1 (a), a tapered cantilever column is 

loaded uniformly distributed axial force (w) along the length 
and concentric axial force (p) at the free end. The column is 
assumed to have a linear elastic, isotropic material properties 
and its axial deformation is negligibly small. The flexural 
stiffness of the column varies along the length as shown in 
Fig. 1 (b).  

Origin (o) is set at free end in the rectangular coordinate 
system. The vertical axis is x-axis and the horizontal axis is 
y-axis. The arc length from the origin is defined s . The 
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differential equation of the deflection can be derived as Eq. 
(1) using the defined coordinate system.  

 

(a) 

(b) 
 

Figure 1. Column under the combined loading 

 

 (1) 
where, φ  is the slope to the x-axis, M is a flexural 

moment, EI is a flexural stiffness. 
The flexural stiffness is varied by )(00 srIEEI =  

along the length of the column at ss = . For defining 
geometry of column, a flexural stiffness ratio n  is 

introduced as mmIEIEn /00= . 00IE  is the flexural 
stiffness of the column at 0=s  and mmIE  is the 
flexural stiffness of the column at Ls = . In this study, the 
linear, parabolic, and sinusoidal taper are chosen as the vari-
able flexural stiffness of the columns.  

 
1) Linear taper  

2) Parabolic taper  

 3) Sinusoidal taper    

A flexural moment and a shear force at an arbitrary 
location are calculated by differentiating the Eq. (1) about s. 
By applying the distributed load (w) and the concentric load 
(p), the governing equation can be derived as follows.  

(2) 
The boundary conditions at free end ( 0=s ) and at fixed 

end ( Ls = ) are follows. 
 

      (3) 
                       (4) 

 
where, L is the length of column. 
By introducing a new parameter Ls /=ξ , the Eq. (2) 

can be nondimensionalized as Eq. (5).   
 

 (5) 
 

By introducing the parameters 
EI
L

EI
pL 32

, ωγκ == to Eq. 

(5), it is derived a nondimensionalized governing differential 
equation that composed of the distributed uniform axial load 
and concentric axial load as follows.  

(6) 
The boundary conditions at free end (ξ =0) and at fixed 

end (ξ =1) are follows. 
                   (7) 
                             
     (8) 

 
Since the buckling loads (p and w) are derived from Eq. 

(6), this research analyzes the Eq. (6) to solve the nonlinear 
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differential equation using the differential transformation 
technique. 

 
 
3. Differential Transformation 
 
The differential transformation5) technique was initially 

proposed by J. K. Zhou in 1986 using Taylor Series6) to 
solve the linear and nonlinear initial value problems in the 
electric circuit research. This approach can also be applied to 
other linear and nonlinear engineering problems using 
simple recursion formula and can derive high accurate 
solutions. 

The differential transformation of arbitrary function is 
derived as follows. 

               
 

  (9) 
 

where, Y(k) is a differential transformed function or a T-
function.  

The differential inverse transformation of Y(k) is defined 
as follows. 

                        
         (10) 
 

Using Eq. (9) and Eq. (10), the original function, y(x), can 
be derived as follows. 

           
     (11) 
 

 
Based on these derivations, the basic relationships of 

differential transformation are summarized at Table 1. 
 

Table 1. Relationship between original and differential transformation 

functions 

Original  

Functions 

Differential Transformation  

Functions  

)()()( xzxyxw ±=  )()()( kZkYkW ±=  

)()( xyxw λ=  )()( kYkW λ=  

n

n

dx
xydxw )()( =  W(k)=(k+1)(k+2)…(k+n)Y(k+n) 

)()()( xzxyxw =  ∑
=

−=
k

l
kZlYxW

0
)1()()(  

mxxw =)(  )()( mkkW −= δ  
1 , k=m 

0 , k≠m 

  λ  : Constant,  )(kδ  : Dirac delta function 
 

In the practical applications, y(x) can include only finite 
number of terms and can be rewritten as Eq. (12). 

                         
 

               (12) 
The number of terms (m) is decided considering the 

desired accuracy, and the remaining terms are negligibly 
small comparing to the result of calculations. 

For a prismatic column under the combined axial load, the 
governing equation, Eq. (6) can be rewritten using the 
differential transformation technique as follows. 

 
          

 
 
 
 

(13) 
 

Where, [ ]kΦ , [ ]ksΦ , and [ ]kcΦ  are the differential 
transformation functions of [ ]ξφ , [ ]ξφsin , and [ ]ξφcos , 
respectively. )(kδ  is the Dirac delta function. 

The boundary conditions are presented as follows.  
        

        (14) 
         
             (15) 

 
Eq. (13) is the nonlinear equation for the computational 

analysis and becomes Eq.(16) when k=0. 
                       

 
          (16) 

For the numerical analysis, Eq. (13) is rewritten as Eq. 
(17) for integer m  and k≥1.  

 
 
 
 
 
 
 

 
(17) 

 
Applying the equations, [ ] [ ]kΦΦ ~0 , to Eq.(15), the 

equation for the buckling load, Eq. (18), is derived. 
        

         (18) 
 

where, )(kQ is a polynominal of k , which has variables 
κ , and γ . 

From Eq. (18), ith buckling load )(k
iQQ = ( i=1, 2, ··· ) is 

calculated about k, which is decided from Eq. (19). 
                       
        (19) 
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where, )1( −k
iQ  is the ith buckling load about (k-1) and 

ε is an allowable error. 
The finite series for )(k

iQ  is rewritten from Eq. (12) by 
applying [ ] [ ]kΦΦ ~0 , which the )(k

iQ  is applied to.  
 

                       (20) 
 

 
where, )(ξφi  is the slope of ith buckling mode of a 

column under a combined load at the nondimensionalized 
buckling load )(k

iQ . 
Using the slope )(φ , which is a function of an 

nondimensionalized buckling load and ξ , the x  and y  
coordinates of the deflected shape are calculated in Eqs. (21) 
and (22) respect to the neutral axis of the column. 

 
                     

        (21) 
                        

            (22) 
 
 

4. ANALYSIS RESULTS 
 
Since the differential transformation is a transformation 

technique based on the Taylor series, the result of analysis is 
described in the form of infinite series. These results can be 
solved easily using the mathematical software packages. 
Mathematica Version 4.27) for MS Windows of Wolfram 
Research, Inc. is used for this purpose.  

 
Table 2. Comparison of buckling load(κ) of column when only concentric 

axial load(p) is applied at free end. )/( 2 EIpL=κ  

φ  
(deg.) 

Analysis  
Result 

Elliptical 
Integration1) 

5th order Runge 
Kutta3) 

0 2.4674 2.4674 2.4671 

20 2.5057 2.5044 2.5049 

40 2.6238 2.6228 2.6240 

60 2.8360 2.8424 2.8412 

80 3.1815 3.1903  3.1920 

100 3.7506 3.7455 3.7458 

120 4.7418 4.6486 4.6498  

140 6.5755 6.2697 6.2719  

160 10.2282 9.9412 9.9428 

176 40.7759 22.4928 - 

Note: The number of terms used in the differential transformation series 
is 11. 

 

Figure 2. Relation of buckling load and free-end slope when only concentric 
axial load(p) is applied at free end 

 
Three different loading conditions are considered for the 

analysis of post-buckling behavior of column. These cases 
are a concentric axial load only, uniformly distributed axial 
load only, and the combination of previous two load cases.  

In order to verify the results of current research about the 
loading conditions, the analysis is performed about the 
prismatic columns. Tables 2 to 7 and figures 2 to 7 show the 
buckling load and deflection of the prismatic columns about 
various slope at the free end.  
 

Table 3. Comparison of free-end-deflection of column when only 
concentric axial load(p) is applied at free end. )/( 2 ELpL=κ  

Analysis  
Result 

Elliptic  
Integral1) 

5th order  
Runge Kutta3) φ  

(deg.)
Lxa / Lya / Lxa /  Lya /  Lxa / Lya /

0 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000

20 0.9697 0.2194 0.9700 0.2200 0.9698 0.2194

40 0.8812 0.4223 0.8810 0.4220 0.8812 0.4223

60 0.7408 0.5937 0.7410 0.5930 0.7410 0.5933

80 0.5587 0.7205 0.5600 0.7190 0.5594 0.7196

100 0.3492 0.7913 0.3490 0.7920 0.3490 0.7916

120 0.1303 0.7983 0.1230 0.8030 0.1231 0.8032

140 -0.0870 0.7408 -0.1070 0.7500 -0.1070 0.7505

160 -0.3491 0.6218 -0.3400 0.6250 -0.3404 0.6247

176 -0.7338 0.3257 -0.5770 0.4210 - - 

Note: The number of terms used in the differential transformation series 
is 11. 
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Figure 3. Nondimensionalized deflection when only concentric axial load 
(p) is applied at free end 

 
 

Table 4. Comparison of buckling load(γ) of column when only uniformly 
distributed axial load(w) is applied. )/( 3 EIwL=γ  

φ  
(deg.) 

Analysis Result 
5th order Runge 

Kutta3) 

0 7.8373 7.8356 

20 7.9497 7.9448 

40 8.2868 8.2877 

60 8.8754 8.9101 

80 9.8394 9.9070 

100 11.4827 11.4638 

120 14.4542 13.9685 

140 19.8382 18.3809 

160 28.5646 28.1280 

176 105.3010 - 

Note: The number of terms used in the differential transformation series 
is 16. 

Figure 4. Relation of buckling load and free-end slope when only uniformly 
distributed axial load (w) is applied 

 
Also, the analysis of tapered columns is performed in the 

range of flexural stiffness ratio 0.1=n  to 0.2=n . Tables 
8 to 9 and figures 8 to 9 summarize the analysis results of 
the tapered columns to investigate the influence of the 
variation of flexural stiffness to the buckling load in the case 
of a flexural stiffness ratio 5.1=n .  

As shown in tables 2 to 7 and figures 2 to 7, the current 
results about the prismatic columns show the similar results 
of previous research, which are analytical studies using 
elliptical integration and numerical studies using Butcher's 
5th order Runge-Kutta method.  

 
Table 5. Comparison of free-end-deflection of column when only uniformly 

distributed axial load(w) is applied. )/( 3 EIwL=γ  

Analysis Result 5th order Runge Kutta3) 

φ  

(deg.)
Lxa / Lya /  Lxa /  Lya /  

0 1.0000 0.0000 1.0000 0.0000 

20 0.9631 0.2484 0.9685 0.2255 

40 0.8564 0.4732 0.8761 0.4336 

60 0.6878 0.6589 0.7299 0.6082 

80 0.4717 0.7878 0.5406 0.7358 

100 0.2282 0.8459 0.3216 0.8063 

120 -0.0173 0.8249 0.0872 0.8130 

140 -0.2489 0.7276 -0.1502 0.7517 

160 -0.5191 0.5630 -0.3877 0.6133 

176 -0.8213 0.2500 - - 

Note: The number of terms used in the differential transformation series 
is 16. 
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Figure 5. Nondimensionalized deflection when only uniformly distributed 
axial load(w) is applied along the length 

 
 

Table 6. Comparison of buckling load(κ and γ) of column when a 
combination of concentric axial load(p) and uniformly distributed axial 

load(w) is applied. )//( 32 EIwLEIpL === γκ  

φ  
(deg.) 

Analysis Result 
5th order Runge 

Kutta3) 

0 1.8959 1.8957 

20 1.9228 1.9237 

40 2.0098 2.0120 

60 2.1758 2.1726 

80 2.4561 2.4309 

100 2.9089 2.8368 

120 3.6137 3.4948 

140 4.6994 4.6649 

160 7.0633 7.2815 

176 29.9863 - 

Note: The number of terms used in the differential transformation series is 
16. 

Figure 6. Relation of buckling load and free-end slope when a combination 
of concentric axial load(p) and uniformly distributed axial load(w) is 

applied 
 
The buckling load at 176 degree of slope shows a 

discrepancy from the elliptical analysis. This is because the 
geometric nonlinearity according to the increment of the 
slope at free end. It is considered to be reduced the 
difference by increasing the number of terms in the finite 
series of the differential transformation.  

Tables 8 to 9 and figures 8 to 9 show the buckling load 
and deflection of the tapered columns about various slope at 
the free end in the case of a flexural stiffness ratio 5.1=n . 
As shown in table 8, the buckling load of sinusoidal tapered 
columns is largest, the linear is second largest, and the 
parabolic is smallest in the all ranges of slopes at free end.  

 
Table 7. Comparison of free-end-deflection of column when a combination 

of concentric axial load(p) and uniformly distributed axial load(w) is 
applied. )//( 32 EIwLEIpL === γκ  

Analysis Result 
5th order Runge  

Kutta3) φ  
(deg.) 

Lxa / Lya /  Lxa /  Lya /  

0 1.0000 0.0000 1.0000 0.0000 

20 0.9684 0.2256 0.9634 0.2473 

40 0.8760 0.4338 0.8564 0.4732 

60 0.7300 0.6080 0.6882 0.6582 

80 0.5425 0.7333 0.4729 0.7864 

100 0.3287 0.7998 0.2279 0.8462 

120 0.0995 0.8050 -0.0277 0.8312 

140 -0.1496 0.7503 -0.2763 0.7392 

160 -0.4258 0.6129 -0.5083 0.5657 

176 -0.7525 0.3092 - - 

Note: The number of terms used in the differential transformation series 
is 16. 
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Figure 7. Nondimensionalized deflection when a combination of concentric 
axial load(p) and uniformly distributed axial load(w) is applied 

 
Next, as shown in table 9, the deflection of parabolic 

tapered columns in the x  coordinates is largest, the 
sinusoidal is second largest, and the linear is smallest in the 
range of slope 0 to 140 degrees at free end. However, when 
the range of the slope is 160 to 176 degrees at the free end, 
the deflection of sinusoidal tapered columns in the x  
coordinates is largest, the linear is second largest, and the 
parabolic is smallest.  

 

Figure 8. Relation of buckling load and free-end slope when a combination 
of concentric axial load(p) and uniformly distributed axial load(w) is 

applied. (tapered column, 5.1=n ) 
 

Figures 10 (a), (b), and (c) show the relation of buckling 
load, EIwLEIpL // 32 = , and flexural stiffness ratio, n ,  
for the linear, parabolic, and sinusoidal tapered column, 
respectively.  

As shown in figures 10, for the linear taper, the buckling 
load increases along with the flexural stiffness ratio. Also, 
for the parabolic taper and the sinusoidal taper, the buckling 
loads increase and decrease as the flexural ratios      
increase. For the case of the parabolic taper, the strongest 
column occurs at the flexural ratio, 6.1=n  as shown in 
figures 10 (b). For the case of the sinusoidal taper, the 
strongest column occurs at the flexural ratio, 9.1=n , or  

7.1=n , for the range of slope 0 to 80 degrees, 176 degrees 
at free end, respectively as shown in figures 10 (c).  

This research shows the possibility of analysis using the 
differential transformation about a tapered column, which 
has arbitrary flexural stiffness as well as the chosen flexural 
stiffness, the linear, parabolic, and sinusoidal taper, for the 
various applied load as shown above. It is also possible to 
analyze the column for the various linear load combination 
using the relation of γκ c= , where c  is constant.  
 
 

Table 8. Comparison of buckling load (κ and γ) of column when a 
combined load of concentric axial load (p) and uniformly distributed axial 

load (w) is applied. ( EIwLEIpL // 32 ==κ , tapered column, 
5.1=n ) 

φ  
(deg.) 

Linear  
Taper 

Parabolic  
Taper 

Sinusoidal 
Taper 

0 2.5672 1.9783 2.6887 

20 2.6040 2.0080 2.7256  

40 2.7183 2.1015 2.8368  

60 2.9264 2.2737 3.0311 

80 3.2704 2.5538 3.3465 

100 3.8409 2.9945 3.8739  

120 4.8146 3.6895 4.7987 

140 6.4430 4.8529 6.4969 

160 9.5193 7.4918 10.0466 

176 37.5779 32.9710 40.6778 

  Note: The number of terms used in the differential transformation series 
is 16. 
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(a) linear taper 
 

(b) Parabolic taper  

(c) sinusoidal taper 
 
Figure 9. Nondimensionalized deflection when a combination of concentric 

axial load(p) and uniformly distributed axial load(w) is applied. 
( EIwLEIpL // 32 ==κ , tapered column, 5.1=n ) 

 
 
Table 9. Comparison of nondimensionalized deflection at free end when a 
combined load of concentric axial load (p) and uniformly distributed axial 

load (w) is applied. ( EIwLEIpL // 32 ==κ , tapered column, 
5.1=n ) 

Linear  
Taper 

Parabolic  
Taper 

Sinusoidal 
Taper φ  

(deg.) Lxa / Lya / Lxa /  Lya /  Lxa / Lya /
0 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000

20 0.9702 0.2171 0.9677 0.2301 0.9699 0.2189

40 0.8827 0.4182 0.8731 0.4422 0.8815 0.4223

60 0.7438 0.5887 0.7237 0.6197 0.7403 0.5959

80 0.5635 0.7149 0.5308 0.7483 0.5550 0.7266

100 0.3560 0.7854 0.3087 0.8179 0.3393 0.8016

120 0.1380 0.7929 0.0698 0.8235 0.1108 0.8113

140 -0.0910 0.7406 -0.1807 0.7614 -0.1194 0.7537

160 -0.3742 0.6213 -0.4462 0.6139 -0.3814 0.6232

176 -0.7396 0.3200 -0.7544 0.3087 -0.7362 0.3226
Note: The number of terms used in the differential transformation series 

is 16. 
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( a ) Linear taper 
 
 
 
 

( b ) Parabolic taper 
 
 
 
 

 

( c ) Sinusoidal taper  
 
 
 

Figure 10. Relation of buckling load and flexural stiffness ratio when a 
combination of concentric axial load(p) and uniformly distributed axial 

load(w) is applied 

 
5. CONCLUSION 
 
This research calculated the buckling load of tapered 

column and analyzed the post-buckling behavior by solving 
the nonlinear differential equation using the differential 
transformation technique. The load combinations considered 
are a concentric load at free end, a uniformly distributed 
load along the length, and a combined load of concentric 
load and uniformly distributed load. The variation of 
flexural stiffness is included in the nonlinear differential 
equation.  

The analysis results using the differential transformation 
verify with the results of previous studies. The buckling load 
of sinusoidal tapered columns is largest, the linear is second 
largest, and the parabolic is smallest in the all ranges of 
slopes at free end.  

This research provided the possibility of the analysis of 
post-buckling behavior for the various flexural stiffness, and 
load conditions using the differential transformation techni-
que. It is also possible to extend the linear combinations of 
loads. 

Through this research, it is verified that the differential 
transformation technique can apply to solve the nonlinear 
differrential equation problems, such as analysis of post-
buckling behavior. It is also expected that the differential 
transformation technique apply to various more complicated 
problems in the future. 
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