• 제목/요약/키워드: post translational modification

검색결과 115건 처리시간 0.029초

벼의 등숙에 따른 복합단백질의 post-translational modification 또는 multigene family로 발현하는지? (Multiple spots in 2-D gel : Multigene family or Post-translational Modification in Response to Seed Maturation in Rice ?)

  • 우선희;김세영;김태선;조성우;김진영;조건;정근욱;조용구;이철원;정승근;박영목;최종순
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2006년도 한국약용작물학회 공동춘계학술발표회
    • /
    • pp.172-173
    • /
    • 2006
  • PDF

Regulation by Reversible S-Glutathionylation: Molecular Targets Implicated in Inflammatory Diseases

  • Shelton, Melissa D.;Mieyal, John J.
    • Molecules and Cells
    • /
    • 제25권3호
    • /
    • pp.332-346
    • /
    • 2008
  • S-glutathionylation is a reversible post-translational modification that continues to gain eminence as a redox regulatory mechanism of protein activity and associated cellular functions. Many diverse cellular proteins such as transcription factors, adhesion molecules, enzymes, and cytokines are reported to undergo glutathionylation, although the functional impact has been less well characterized. De-glutathionylation is catalyzed specifically and efficiently by glutaredoxin (GRx, aka thioltransferase), and facile reversibility is critical in determining the physiological relevance of glutathionylation as a means of protein regulation. Thus, studies with cohesive themes addressing both the glutathionylation of proteins and the corresponding impact of GRx are especially useful in advancing understanding. Reactive oxygen species (ROS) and redox regulation are well accepted as playing a role in inflammatory processes, such as leukostasis and the destruction of foreign particles by macrophages. We discuss in this review the current implications of GRx and/or glutathionylation in the inflammatory response and in diseases associated with chronic inflammation, namely diabetes, atherosclerosis, inflammatory lung disease, cancer, and Alzheimer's disease, and in viral infections.

Cancer and Epigenetics

  • Bae, Jae-Bum;Kim, Young-Joon
    • Animal cells and systems
    • /
    • 제12권3호
    • /
    • pp.117-125
    • /
    • 2008
  • One of the interesting trends in genome research is the study about epigenetic modification above single gene level. Epigenetics refers study about heritable change in the genome, which accompany modification in DNA or Chromatin besides DNA sequence alteration. We used to have the idea that the coding potential of the genome lies within the arrangement of the four bases A, T, G, C; However, additional information that affects phenotype is stored in the distribution of the modified base 5-methylcytosine. This form of information storage is flexible enough to be adapted for different somatic cell types, yet is stable enough to be retained during mitosis and/or meiosis. Epigenetic modification is a modification of the genome, as opposed to being part of the genome, so is known as "epigenetics"(Greek for "upon" genetics). This modification could be methylation on Cytosine base or post translational modification on histone protein(methylation, acetylation, phosphorylation, Sumoylation)($Dimitrijevi\hat{E}$ et al 2005). In this review, we would like to focus on the relationship of DNA methylation and cancer.

대두 저장단백질 유전자의 발현 조절 메카니즘 (Regulation Mechanism of Soybean Storage Protein Gene Expression)

  • 최양도;김정호
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1987년도 식물생명공학 심포지움 논문집 Proceedings of Symposia on Plant Biotechnology
    • /
    • pp.283-307
    • /
    • 1987
  • Glycinin and $\beta$-conglycinin are the most abundant storage protein in soybean. These proteins are known to be synthesized predominantly during germination and cell expansion phase of seed development for short period, and synthesized not in other tissues. Genes encoding these storage proteins are useful system to study the mechanism of development stage and tissue specific gene expression in eukaryotes, especially plants, at the molecular level. The cDNA and genomic clones coding for glycinin have been isolated and regulation mechanism of the gene expression has been studied. Initially, development and tissue-specific expression of the glycinin gene is regulated at the level of transcription. Post-transcriptional processing is also responsible for delayed accumulation of the mRNA. Translational control of the storage protein gene has not been reported. Post-translational modification is another strategic point to regulate the expression of the gene. It is possible to identify positive and/or negative reguratory clements in vivo by producing transgenic plants agter gene manipulation. Elucidation of activation and repression mechanism of soybean storage protein genes will contribute to the understanding of the other plant and eukaryotic genes at molecular level.

  • PDF

Epigenetic modification is linked to Alzheimer's disease: is it a maker or a marker?

  • Lee, Jung-Hee;Ryu, Hoon
    • BMB Reports
    • /
    • 제43권10호
    • /
    • pp.649-655
    • /
    • 2010
  • Alzheimer's disease (AD) is the most common age-dependent neurodegenerative disorder and shows progressive memory loss and cognitive decline. Intraneuronal filaments composed of aggregated hyperphosphorylated tau protein, called neurofibrillary tangles, along with extracellular accumulations of amyloid $\beta$ protein (A$\beta$), called senile plaques, are known to be the neuropathological hallmarks of AD. In light of recent studies, epigenetic modification has emerged as one of the pathogenic mechanisms of AD. Epigenetic changes encompass an array of molecular modifications to both DNA and chromatin, including transcription factors and cofactors. In this review, we summarize how DNA methylation and changes to DNA chromatin packaging by post-translational histone modification are involved in AD. In addition, we describe the role of SIRTs, histone deacetylases, and the effect of SIRT-modulating drugs on AD. Lastly, we discuss how amyloid precursor protein (APP) intracellular domain (AICD) regulates neuronal transcription. Our understanding of the epigenomes and transcriptomes of AD may warrant future identification of novel biological markers and beneficial therapeutic targets for AD.

식물 CRL4 복합체의 구조, 기능 및 식물 세포 내 다양한 이벤트와의 연계성 (Structure and Biological Function of Plant CRL4, and Its Involvement in Plant Cellular Events)

  • 이재훈
    • 생명과학회지
    • /
    • 제26권3호
    • /
    • pp.364-375
    • /
    • 2016
  • 번역 후 변형 과정은 외부 자극으로부터 세포의 신속한 반응을 야기하는데 있어서 매우 효율적인 기작이다. 이 중, 유비퀴티네이션은 진핵생물 내 대표적인 번역 후 변형 과정으로서, 이러한 유비퀴티네이션에 의해 매개되는 UPS (유비퀴틴/프로테아좀 시스템)는 세포 내 다양한 단백질들의 분해과정을 통해 그들의 안정성을 조절한다. 유비퀴티네이션 과정에 참여하는 3종류의 효소 중에서, E3 효소는 분해할 대상 기질을 결정한다는 면에서 그 중요성을 가지고 있다. CRL (cullin-RING E3 ubiquitin ligase)은 E3 효소 중 가장 거대한 그룹을 형성하고 있는데, 이들은 생체 내에서 cullin, RBX1, 어댑터, 기질 수용체로 이루어진 복합체의 형태로서 그 기능을 발휘한다. 이 중, SCF 복합체로도 알려진 CRL1 복합체의 기능은 다양한 연구를 통해 광범위하게 알려져 온 반면, CRL4 복합체에 대한 연구 및 고찰은 상대적으로 미흡한 실정이다. 또한, 애기장대는 DCAF로 명명된 잠재적 기질 수용체를 총 119개 보유하고 있는데, 현재까지 이들 중 일부 기질 수용체들의 기능만이 밝혀진 상태로서, 나머지 기질 수용체들의 기능 규명은 향후 활발히 탐색되어야 할 연구분야라 할 수 있다. 본 총설에서는 식물의 CRL4 복합체의 구조 및 활성 조절을 알아보고, 각 CRL4 복합체가 관여하는 다양한 식물 내 이벤트에 관하여 최근까지 보고된 CRL4 기질 수용체들을 중심으로 그 연구 진행 사항을 업데이트하고자 한다. 이러한 접근은 각 CRL4 복합체가 기능하는 식물의 다양한 신호 전달 기작들을 보다 명확히 이해하고, 향후 전체 CRL4 복합체의 작용 네트워크를 구축하는데 있어 도움이 될 것으로 사료된다.

극미세 단백질 분석을 위한 프로테옴 분획 농축 기술 (Prefractionation and Enrichment for the Analysis of Low Aboundance Proteome)

  • 지재웅;변상요
    • KSBB Journal
    • /
    • 제16권5호
    • /
    • pp.435-441
    • /
    • 2001
  • In spite of the powerfulness for the simultaneous study of proteome expression and post-translational modification, 2-D PAGE has inevitable limitation on detect low aboundant proteins. Since many of the low abundant proteins are likely to have very important regulatiory functions in cells, separation and analysis of low copy number proteins is an important issue in proteome studies and challenge for 2-D techniques. Among various methods developed to detect low abundant proteins, electrophoretic protein prefractionation, chromatographic protein prefractionation, and subcellular fractionation are explained in this paper. Their practical strengths and weaknesses are also explained with current research trends.

  • PDF

Regulation of the stress activated MAP kinase

  • 최의주
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1995년도 제3회 추계심포지움
    • /
    • pp.23-27
    • /
    • 1995
  • 세포내에서의 유전자 발현의 다양성은 여러 종류의 외부자극에 의해 항상 조절되어 지고 있다. 유전자 발현의 조절기전과정에서 여러 transcription factor들이 중심적 역할을 하는 것이 알려져 있다. Transcription factor의 활성도는 원핵 생물과 진핵 생물 공히 protein phosphorylation과정을 통하여 조절되어지는 공통의 경로를 거치게 된다. 이러한 protein 인산화과정은 상창에 따른 post-translational modification과정으로서 세포표면에 위치한 각각의 수용체(receptor)들이 신호를 인지하여 그 반응으로서 신속하게 transcription factor의 활성을 조절하기 위한 것이다.

  • PDF

Revisiting PPARγ as a target for the treatment of metabolic disorders

  • Choi, Sun-Sil;Park, Jiyoung;Choi, Jang Hyun
    • BMB Reports
    • /
    • 제47권11호
    • /
    • pp.599-608
    • /
    • 2014
  • As the prevalence of obesity has increased explosively over the last several decades, associated metabolic disorders, including type 2 diabetes, dyslipidemia, hypertension, and cardiovascular diseases, have been also increased. Thus, new strategies for preventing and treating them are needed. The nuclear peroxisome proliferator-activated receptors (PPARs) are involved fundamentally in regulating energy homeostasis; thus, they have been considered attractive drug targets for addressing metabolic disorders. Among the PPARs, $PPAR{\gamma}$ is a master regulator of gene expression for metabolism, inflammation, and other pathways in many cell types, especially adipocytes. It is a physiological receptor of the potent anti-diabetic drugs of the thiazolidinediones (TZDs) class, including rosiglitazone (Avandia). However, TZDs have undesirable and severe side effects, such as weight gain, fluid retention, and cardiovascular dysfunction. Recently, many reports have suggested that $PPAR{\gamma}$ could be modulated by post-translational modifications (PTMs), and modulation of PTM has been considered as novel approaches for treating metabolic disorders with fewer side effects than the TZDs. In this review, we discuss how PTM of $PPAR{\gamma}$ may be regulated and issues to be considered in making novel anti-diabetic drugs that can modulate the PTM of $PPAR{\gamma}$.

세포생물학과 Proteomics 응용 (Proteomic Application in Cell Biology)

  • 김동욱
    • 미생물학회지
    • /
    • 제37권2호
    • /
    • pp.109-113
    • /
    • 2001
  • 많은 생물체의 완전한 genome sequence가 속속 밝혀지면서 세포의 기능을 종합적으로 평가하려는 노력들이 이어져 왔다. DNA microarray는 세포 전체의 유전자 전사, 즉 mRNA 레벨을 측정해주므로 세포가 처해있는 서로 다른 환경 속에서 유전자 발현의 차이를 측정할 수 있다. 그러나 유전자 발현의 최종 산물은 mRNA를 통해 번역된 단백질에 해당되고, 많은 단백질이 번역후 수식(post-translational modification) 과정을 거쳐 세포 내에서 기능을 발휘하므로 진정한 세포의 생리학적 상태를 평가하기 위해선 단백질 레벨의 분석이 필수적이다. Proteomics란 유전자 산물 즉 단백질의 기능을 large-scale로 분석하는 것으로 정의된다. 이것은 genome에 의해 만들어지는 모든 단백질(proteome)을 의미하기도 하고 좁은 의미에서는 세포내의 어떤 organelle(예: Golgi Complex)에 존재하는 단백질 혹은 어떤 protein complex를 지칭하기도 한다. Proteomics는 어떤 주어진 조건에서 특별한 세포 또는 organelle에서 발현되는 단백질들을 연구하고 이해하는데 강력한 수단이 되고 있다. 이런 proteomics는 genomics, bioinformatics 등과 유기적으로 연결되어 세포의 기능을 입체적으로 이해하는데 도움을 준다. 본고에서는 proteomic analysis 과정을 간단히 살피고 최근 세포 생물학에서 이루어지는 proteomics의 응용을 살펴본다.

  • PDF