Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.3.364

Structure and Biological Function of Plant CRL4, and Its Involvement in Plant Cellular Events  

Lee, Jae-Hoon (Department of Biology Education, Pusan National University)
Publication Information
Journal of Life Science / v.26, no.3, 2016 , pp. 364-375 More about this Journal
Abstract
Post-translational modification is an efficient process to rapidly transduce external stimulus into cellular response. Ubiquitination is a typical post-translational modification which is a highly conserved process in eukaryotes. UPS (Ubiquitin/Proteasome System) mediated by the ubiquitination is to target diverse cellular proteins for degradation. Among E3 ubiquitin ligases that function as the key determinant for substrate recognition, CRL (cullin–RING E3 ubiquitin ligase) is the largest family and forms the complex composed of cullin, RBX1, adaptor and substrate receptor. Although CRL1, also known as SCF complex, has been widely researched for its biological role, the functional studies of CRL4 have been relatively elusive. In Arabidopsis, there are 119 substrate receptors named DCAF (DDB1 CUL4 Associated Factor) proteins for CRL4 and a fraction of DCAF proteins have been identified for their potential functions so far. In this paper, current understanding on structure and biological roles of plant CRL4 complexes in a diverse of cellular events is reviewed, especially focusing on CRL4 substrate receptors. Moreover, the regulatory mechanism of CRL4’s activity is also introduced. These studies will be helpful to further understand the signal transduction pathways in which such CRL4 complexes are involved and give a clue to establish the action network of entire CRL4 complexes in plants.
Keywords
Arabidopsis; CRL4; DCAF; post-translational modification; ubiquitination;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Feng, S., Shen, Y., Sullivan, J. A., Rubio, V., Xiong, Y., Sun, T. P. and Deng, X. W. 2004. Arabidopsis CAND1, an unmodified CUL1-interacting protein, is involved in multiple developmental pathways controlled by ubiquitin/proteasomemediated protein degradation. Plant Cell 16,1870-1882.   DOI
2 Ganpudi, A. L. and Schroeder, D. F. 2013. Genetic interactions of Arabidopsis thaliana damaged DNA binding protein 1B (DDB1B) with DDB1A, DET1, and COP1. Genes Genom. Genet. 3, 493-503.
3 Gingerich, D. J., Gagne, J. M., Salter, D. W., Hellmann, H., Estelle, M., Ma, L. and Vierstra, R. D. 2005. Cullins 3a and 3b assemble with members of the broad complex/tram-track/bric-a-brac (BTB) protein family to form essential ubiquitin-protein ligases (E3s) in Arabidopsis. J. Biol. Chem. 280, 18810-18821.   DOI
4 Gruber, H., Heijde, M., Heller, W., Albert, A., Seidlitz, H. K. and Ulm, R. 2010. Negative feedback regulation of UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. Proc. Natl. Acad. Sci. USA 107, 20132-20137.   DOI
5 Guitton, A. E., Page, D. R., Chambrier, P., Lionnet, C., Faure, J. E., Grossniklaus, U. and Berger, F. 2004. Identification of new members of Fertilisation Independent Seed Polycomb group pathway involved in the control of seed development in Arabidopsis thaliana. Development 131, 2971-2981.   DOI
6 Gusmaroli, G., Feng, S. and Deng, X. W. 2004. The Arabidopsis CSN5A and CSN5B subunits are present in distinct COP9 signalosome complexes, and mutations in their JAMM domains exhibit differential dominant negative effects on development. Plant Cell 16, 2984-3001.   DOI
7 Haglund, K., Di Fiore, P. P. and Dikic, I. 2003. Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem. Sci. 28, 598-603.   DOI
8 He, Y. J., McCall, C. M., Hu, J., Zeng, Y. and Xiong, Y. 2006. DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases. Genes Dev. 20, 2949-2954.   DOI
9 Heijde, M. and Ulm, R. 2013. Reversion of the Arabidopsis UV-B photoreceptor UVR8 to the homodimeric ground state. Proc. Natl. Acad. Sci. USA 110, 1113-1118.   DOI
10 Higa, L. A., Wu, M., Ye, T., Kobayashi, R., Sun, H. and Zhang, H. 2006. CUL4-DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat Cell Biol. 8, 1277-1283.   DOI
11 Hotton, S. K. and Callis, J. 2008. Regulation of cullin Ring ligases. Annu. Rev. Plant Biol. 59, 467-489.   DOI
12 Huang, T. T. and D'Andrea, A. D. 2006. Regulation of DNA repair by ubiquitylation. Nat. Rev. Mol. Cell Biol. 7, 323-334.   DOI
13 Husnjak, K., Elsasser, S., Zhang, N., Chen, X., Randles, L., Shi, Y., Hofmann, K., Walters, K. J., Finley, D. and Dikic, I. 2008. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453, 481-488.   DOI
14 Irigoyen, M. L., Iniesto, E., Rodriguez, L., Puga, M. I., Yanagawa, Y., Pick, E., Strickland, E., Paz-Ares, J., Wei, N., De Jaeger, G., Rodriguez, P. L., Deng, X. W. and Rubio, V. 2014. Targeted degradation of abscisic acid receptors is mediated by the ubiquitin ligase substrate adaptor DDA1 in Arabidopsis. Plant Cell 26, 712-728.   DOI
15 Jenkins, G. I. 2014. The UV-B photoreceptor UVR8: from structure to physiology. Plant Cell 26, 21-37.   DOI
16 Jiang, J. and Clouse, S. D. 2001. Expression of a plant gene with sequence similarity to animal TGF-b receptor interacting protein is regulated by brassinosteroids and required for normal plant development. Plant J. 26, 35-45.   DOI
17 Kim, S. H., Kim, H., Seo, K. I., Kim, S. H., Chung, S., Huang, X., Yang, P., Deng, X. W. and Lee, J. H. 2014. DWD hypersensitive to UV-B 1 is negatively involved in UV-B mediated cellular responses in Arabidopsis. Plant Mol. Biol. 86, 571-583.   DOI
18 Jiang, S., Kumar, S., Eu, Y. J., Jami, S. K., Stasolla, C. and Hill, R. D. 2012. The Arabidopsis mutant, fy-1, has an ABA-insensitive germination phenotype. J. Exp. Bot. 63, 2693-2703.   DOI
19 Jin, J., Arias, E. E., Chen, J., Harper, J. W. and Walter, J. C. 2006. A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol. Cell 23, 709-721.   DOI
20 Kim, I., Mi, K. and Rao, H. 2004. Multiple interactions of rad23 suggest a mechanism for ubiquitylated substrate delivery important in proteolysis. Mol. Biol. Cell 15, 3357-3365.   DOI
21 Kim, S. H., Lee, J. H., Seo, K. I., Ryu, B., Sung, Y., Chung, T., Deng, X. W. and Lee, J. H. 2014. Characterization of a Novel DWD protein that participates in heat stress response in Arabidopsis. Mol. Cells 7, 833-840.
22 Köhler, C., Hennig, L., Bouveret, R., Gheyselinck, J., Grossniklaus, U. and Gruissem, W. 2003. Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development. EMBO J. 22, 4804-4814.   DOI
23 Lau, O. S., Huang, X., Charron, J. B., Lee, J. H., Li, G. and Deng, X. W. 2011. Interaction of Arabidopsis DET1 with CCA1 and LHY in mediating transcriptional repression in the plant circadian clock. Mol. Cell 43, 703-712.   DOI
24 Lee, J. and Zhou, P. 2007. DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol. Cell 26, 775-780.   DOI
25 Lee, J. H., Yoon, H. J., Terzaghi, W., Martinez, C., Dai, M., Li, J., Byun, M. O. and Deng, X. W. 2010. DWA1 and DWA2, two Arabidopsis DWD protein components of CUL4-based E3 ligases, act together as negative regulators in ABA signal transduction. Plant Cell 22, 1716-1732.   DOI
26 Lee, J. H. and Kim, W. T. 2011. Regulation of abiotic stress signal transduction by E3 ubiquitin ligases in Arabidopsis. Mol. Cells 31, 201-208.   DOI
27 Lee, J. H., Terzaghi, W. and Deng, X. W. 2011. DWA3, an Arabidopsis DWD protein, acts as a negative regulator in ABA signal transduction. Plant Sci. 180, 352-357.   DOI
28 Lee, J. H., Terzaghi, W., Gusmaroli, G., Charron, J. B., Yoon, H. J., Chen, H., He, Y. J., Xiong, Y. and Deng, X. W. 2008. Characterization of Arabidopsis and rice DWD proteins and their roles as substrate receptors for CUL4-ring E3 ubiquitin ligases. Plant Cell 20, 152-167.   DOI
29 Li, T., Chen, X., Garbutt, K. C., Zhou, P. and Zheng, N. 2006. Structure of DDB1 in complex with a paramyxovirus V protein: viral hijack of a propeller cluster in ubiquitin ligase. Cell 124, 105-117.   DOI
30 Li, T., Robert, E. I., van Breugel, P. C., Strubin, M. and Zheng, N. 2010. A promiscuous alpha-helical motif anchors viral hijackers and substrate receptors to the CUL4-DDB1 ubiquitin ligase machinery. Nat. Struct. Mol. Biol. 17, 105-111.   DOI
31 Liu, H. and Stone, S. L. 2010. Abscisic acid increases Arabidopsis ABI5 transcription factor levels by promoting KEG E3 ligase self-ubiquitination and proteasomal degradation. Plant Cell 22, 2630-2641.   DOI
32 Liu, H. and Stone, S. L. 2013. Cytoplasmic degradation of the Arabidopsis transcription factor abscisic acid insensitive 5 is mediated by the ring-type E3 ligase Keep on going. J. Biol. Chem. 288, 20267-20279.   DOI
33 Németh, K., Salchert, K., Putnoky, P., Bhalerao, R., Koncz-Kálmán, Z., Stankovic-Stangeland, B., Bakó, L., Mathur, J., Okrész, L., Stabel, S., Geigenberger, P., Stitt, M., Rédei, G. P., Schell, J. and Koncz, C. 1998. Pleiotropic control of glucose and hormone responses by PRL1, a nuclear WD protein, in Arabidopsis. Genes Dev. 12, 3059-3073.   DOI
34 Marrocco, K., Thomann, A., Parmentier, Y., Genschik, P. and Criqui, M. C. 2009. The APC/C E3 ligase remains active in most post-mitotic Arabidopsis cells and is required for proper vasculature development and organization. Development 136, 1475-1485.   DOI
35 Moser, J., Volker, M., Kool, H., Alekseev, S., Vrieling, H., Yasui, A., van Zeeland, A. A. and Mullenders, L. H. 2005. The UV-damaged DNA binding protein mediates efficient targeting of the nucleotide excision repair complex to UV-induced photo lesions. DNA Repair 4, 571-582.   DOI
36 Mukhopadhyay, D. and Riezman, H. 2007. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315, 201-205.   DOI
37 Olzman, J. A. and Chin, L. S. 2008. Parkin-mediated K63-linked polyubiquitination: a signal for targeting misfolded proteins to the aggresome-autophagy pathway. Autophagy 4, 85-87.   DOI
38 Osterlund, M. T., Hardtke, C. S., Wei, N. and Deng, X. W. 2000. Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405, 462-466.   DOI
39 Pepper, A., Delaney, T., Washburn, T., Poole, D. and Chory, J. 1994. DET1, a negative regulator of light-mediated development and gene expression in Arabidopsis, encodes a novel nuclear-localized protein. Cell 78, 109-116.   DOI
40 Petroski, M. D. and Deshaies, R. J. 2005. Function and regulation of cullin-ring ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 6, 9-20.
41 Salmena, L. and Pandolfi, P. P. 2007. Changing venues for tumour suppression: balancing destruction and localization by monoubiquitylation. Nat. Rev. Cancer 7, 409-413.   DOI
42 Pickart, C. M. 2001. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503-533.   DOI
43 Piper, R. C. and Lehner, P. 2011. Endosomal transportation via ubiquitination. Trends Cell Biol. 21, 647-655.   DOI
44 Saijo, Y., Sullivan, J. A., Wang, H., Yang, J., Shen, Y., Rubio, V., Ma, L., Hoecker, U. and Deng, X. W. 2003. The COP1-SPA1 interaction defines a critical step in phytochrome A-mediated regulation of HY5 activity. Genes Dev. 17, 2642-2647.   DOI
45 Sarikas, A., Hartmann, T. and Pan, Z. Q. 2011. The cullin protein family. Genome Biol. 12, 220.   DOI
46 Seo, H. S., Yang, J. Y., Ishikawa, M., Bolle, C., Ballesteros, M. L. and Chua, N. H. 2003. LAF1 ubiquitination by COP1 controls photomorphogenesis and is stimulated by SPA1. Nature 423, 995-999.   DOI
47 Seo, K. I., Lee, J. H., Nezames, C. D., Zhong, S., Song, E., Byun, M. O. and Deng, X. W. 2014. ABD1 is an Arabidopsis DCAF substrate receptor for CUL4-DDB1-based E3 ligases that acts as a negative regulator of abscisic acid signaling. Plant Cell 26, 695-711.   DOI
48 Shi, H., Wang, X., Mo, X., Tang, C., Zhong, S. and Deng, X. W. 2015. Arabidopsis DET1 degrades HFR1 but stabilizes PIF1 to precisely regulate seed germination. Proc. Natl. Acad. Sci. USA 112, 3817-3822.
49 Simpson, G. G., Dijkwel, P. P., Quesada, V., Henderson, I. and Dean, C. 2003. FY is an RNA 39 end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell 113, 777-787.   DOI
50 Young, P., Deveraux, Q., Beal, R. E., Pickart, C. M. and Rechsteiner, M. 1998. Characterization of two polyubiquitin binding sites in the 26 S protease subunit 5a. J. Biol. Chem. 273, 5461-5467.   DOI
51 Zhang, C., Guo, H., Zhang, J., Guo, G., Schumaker, K. S. and Guo, Y. 2010. Arabidopsis cockayne syndrome A-like proteins 1A and 1B form a complex with CULLIN4 and damage DNA binding protein 1A and regulate the response to UV irradiation. Plant Cell 22, 2353-2369.   DOI
52 Zhang, H., Ransom, C., Ludwig, P. and van Nocker, S. 2003. Genetic analysis of early flowering mutants in Arabidopsis defines a class of pleiotropic developmental regulator required for expression of the flowering-time switch flowering locus C. Genetics 164, 347-358.
53 Zhang, W., Ito, H., Quint, M., Huang, H., Noël, L. D. and Gray, W. M. 2008. Genetic analysis of CAND1-CUL1 interactions in Arabidopsis supports a role for CAND1-mediated cycling of the SCFTIR1 complex. Proc. Natl. Acad. Sci. USA 105, 8470-8475.   DOI
54 Zhang, Y., Feng, S., Chen, F., Chen, H., Wang, J., McCall, C., Xiong, Y. and Deng, X. W. 2008. Arabidopsis DDB1-CUL4 Associated factor1 forms a nuclear E3 ubiquitin ligase with DDB1 and CUL4 that is involved in multiple plant developmental processes. Plant Cell 20, 1437-1455.   DOI
55 Stone, S. L., Hauksdóttir, H., Troy, A., Herschleb, J., Kraft, E. and Callis, J. 2005. Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol. 137, 13-30.   DOI
56 Smalle, J. and Vierstra, R.D. 2004. The ubiquitin 26S proteasome proteolytic pathway. Annu. Rev. Plant Biol. 55, 555-590.   DOI
57 Spratt, D. E., Walden, H. and Shaw, G. S. 2014. RBR E3 ubiquitin ligases: new structures, new insights, new questions. Biochem. J. 458, 421-437.   DOI
58 Steinbach, Y. and Hennig, L. 2014. Arabidopsis MSI1 functions in photoperiodic flowering time control. Front. Plant Sci. 5, 77.
59 Stone, S. L., Williams, L. A., Farmer, L. M., Vierstra, R. D. and Callis, J. 2006. Keep on going, a ring E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling. Plant Cell 18, 3415-3428.   DOI
60 Suzuki, G., Yanagawa, Y., Kwok, S. F., Matsui, M. and Deng, X. W. 2002. Arabidopsis COP10 is a ubiquitin-conjugating enzyme variant that acts together with COP1 and the COP9 signalosome in repressing photomorphogenesis. Genes Dev. 16, 554-559.   DOI
61 Vierstra, R. D. 2009. The ubiquitin-26S proteasome system at the nexus of plant biology. Nat. Rev. Mol. Cell Biol. 110, 385-397.
62 Wei, N., Kwok, S. F., von Arnim, A. G., Lee, A., McNellis, T. W., Piekos, B. and Deng, X. W. 1994. Arabidopsis COP8, COP10, and COP11 genes are involved in repression of photomorphogenic development in darkness. Plant Cell 6, 629-643.   DOI
63 Wiborg, J., O’Shea, C. and Skriver, K. 2008. Biochemical function of typical and variant Arabidopsis thaliana U-box E3 ubiquitinprotein ligases. Biochem. J. 413, 447-457.   DOI
64 Angers, S., Li, T., Yi, X., MacCoss, M. J., Moon, R. T. and Zheng, N. 2006. Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature 443, 590-593.
65 Zhu, D., Maier, A., Lee, J. H., Laubinger, S., Saijo, Y., Wang, H., Qu, L. J., Hoecker, U. and Deng, X. W. 2008. Biochemical characterization of Arabidopsis complexes containing constitutively photomorphogenic1 and suppressor of phya proteins in light control of plant development. Plant Cell 20, 2307-2323.   DOI
66 Zhu, L., Bu, Q., Xu, X., Paik, I., Huang, X., Hoecker, U., Deng, X. W. and Huq, E. 2015. CUL4 forms an E3 ligase with COP1 and SPA to promote light-induced degradation of PIF1. Nat. Commun. 6, 7245.   DOI
67 Xu, G., Ma, H., Nei, M. and Kong, H. 2009. Evolution of F-box genes in plants: different modes of sequence divergence and their relationships with functional diversification. Proc. Natl. Acad. Sci. USA 106, 835-840.   DOI
68 Yanagawa, Y., Sullivan, J. A., Komatsu, S., Gusmaroli, G., Suzuki, G., Yin, J., Ishibashi, T., Saijo, Y., Rubio, V., Kimura, S. and Wang, J. and Deng, X. W. 2004. Arabidopsis COP10 forms a complex with DDB1 and DET1 in vivo and enhances the activity of ubiquitin conjugating enzymes. Genes Dev. 18, 2172-2181.   DOI
69 Yee, D. and Goring, D. R. 2009. The diversity of plant U-box E3 ubiquitin ligases: from upstream activators to downstream target substrates. J. Exp. Bot. 60, 1109-1121.   DOI
70 Alexandre, C., Möller-Steinbach, Y., Schönrock, N., Gruissem, W. and Hennig, L. 2009. Arabidopsis MSI1 is required for negative regulation of the response to drought stress. Mol. Plant 2, 675-687.   DOI
71 Bernhardt, A., Lechner, E., Hano, P., Schade, V., Dieterle, M., Anders, M., Dubin, M. J., Benvenuto, G., Bowler, C., Genschik, P. and Hellmann, H. 2006. CUL4 associates with DDB1 and DET1 and its downregulation affects diverse aspects of development in Arabidopsis thaliana. Plant J. 47, 591-603.   DOI
72 Bernhardt, A., Mooney, S. and Hellmann, H. 2010. Arabidopsis DDB1a and DDB1b are critical for embryo development. Planta 232, 555-566.   DOI
73 Bhalerao, R. P., Salchert, K., Bakó, L., Okrész, L., Szabados, L., Muranaka, T., Machida, Y., Schell, J. and Koncz, C. 1999. Regulatory interaction of PRL1 WD protein with Arabidopsis SNF1-like protein kinases. Proc. Natl. Acad. Sci. USA 96, 5322-5327.   DOI
74 Biedermann, S. and Hellmann, H. 2010. The DDB1a interacting proteins ATCSA-1 and DDB2 are critical factors for UV-B tolerance and genomic integrity in Arabidopsis thaliana. Plant J. 62, 404-415.   DOI
75 Biedermann, S. and Hellmann, H. 2011. WD40 and CUL4-based E3 ligases: lubricating all aspects of life. Trends Plant Sci. 16, 38-46.
76 Bjerkan, K. N. and Grini, P. E. 2013. The Arabidopsis DDB1 interacting protein WDR55 is required for vegetative development. Plant Signal. Behav. 8, e25347.   DOI
77 Bjerkan, K. N., Jung-Roméo, S., Jürgens, G., Genschik, P., Grini, P. E. 2012. Arabidopsis WD repeat domain55 Interacts with DNA damaged binding protein1 and is required for apical patterning in the embryo. Plant Cell 24, 1013-1033.   DOI
78 Chu, G. and Chang, E. 1988. Xeroderma pigmentosum group E cells lack a nuclear factor that binds to damaged DNA. Science 242, 564-567.   DOI
79 Bulatov, E. and Ciulli, A. 2015. Targeting Cullin-ring E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation. Biochem. J. 467, 365-386.   DOI
80 Chen, H., Shen, Y., Tang, X., Yu, L., Wang, J., Guo, L., Zhang, Y., Zhang, H., Feng, S., Strickland, E., Zheng, N. and Deng, X. W. 2006. Arabidopsis Cullin4 forms an E3 ubiquitin ligase with RBX1 and the CDD complex in mediating light control of development. Plant Cell 18, 1991-2004.   DOI
81 Dharmasiri, S., Dharmasiri, N., Hellmann, H. and Estelle, M. 2003. The RUB/Nedd8 conjugation pathway is required for early development in Arabidopsis. EMBO J. 22, 1762-1770.   DOI
82 Dohmann, E. M., Kuhnle, C. and Schwechheimer, C. 2005. Loss of the Constitutive photomorphogenic9 signalosome subunit 5 is sufficient to cause the cop/det/fus mutant phenotype in Arabidopsis. Plant Cell 17, 1967-1978.   DOI
83 Dreher, K. and Callis, J. 2007. Ubiquitin, hormones and biotic stress in plants. Ann. Bot. 99, 787-822.   DOI
84 Dumbliauskas, E., Lechner, E., Jaciubek, M., Berr, A., Pazhouhandeh, M., Alioua, M., Cognat, V., Brukhin, V., Koncz, C., Grossniklaus, U., Molinier, J. and Genschik, P. 2011. The Arabidopsis CUL4-DDB1 complex interacts with MSI1 and is required to maintain MEDEA parental imprinting. EMBO J. 30, 731-743.   DOI
85 Elsasser, S., Gali, R. R., Schwickart, M., Larsen, C. N., Leggett, D. S., Muller, B., Feng, M. T., Tubing, F., Dittmar, G. A. and Finley, D. 2002. Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat. Cell Biol. 4, 725-730.   DOI