Regulation by Reversible S-Glutathionylation: Molecular Targets Implicated in Inflammatory Diseases

  • Shelton, Melissa D. (Department of Pharmacology, School of Medicine, Case Western Reserve University, and Louis Stokes Cleveland Veterans Affairs Medical Research Center) ;
  • Mieyal, John J. (Department of Pharmacology, School of Medicine, Case Western Reserve University, and Louis Stokes Cleveland Veterans Affairs Medical Research Center)
  • Received : 2008.04.23
  • Accepted : 2008.04.25
  • Published : 2008.05.31

Abstract

S-glutathionylation is a reversible post-translational modification that continues to gain eminence as a redox regulatory mechanism of protein activity and associated cellular functions. Many diverse cellular proteins such as transcription factors, adhesion molecules, enzymes, and cytokines are reported to undergo glutathionylation, although the functional impact has been less well characterized. De-glutathionylation is catalyzed specifically and efficiently by glutaredoxin (GRx, aka thioltransferase), and facile reversibility is critical in determining the physiological relevance of glutathionylation as a means of protein regulation. Thus, studies with cohesive themes addressing both the glutathionylation of proteins and the corresponding impact of GRx are especially useful in advancing understanding. Reactive oxygen species (ROS) and redox regulation are well accepted as playing a role in inflammatory processes, such as leukostasis and the destruction of foreign particles by macrophages. We discuss in this review the current implications of GRx and/or glutathionylation in the inflammatory response and in diseases associated with chronic inflammation, namely diabetes, atherosclerosis, inflammatory lung disease, cancer, and Alzheimer's disease, and in viral infections.

Keywords

Acknowledgement

Supported by : NIH

References

  1. Adachi, T., Pimentel, D.R., Heibeck, T., Hou, X., Lee, Y.J., Jiang, B., Ido, Y., and Cohen, R.A. (2004). S-glutathiolation of Ras mediates redox-sensitive signaling by angiotensin II in vascular smooth muscle cells. J. Biol. Chem. 279, 29857-29862 https://doi.org/10.1074/jbc.M313320200
  2. Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G.M., Cooper, N.R., Eikelenboom, P., Emmerling, M., Fiebich, B.L., et al. (2000). Inflammation and Alzheimer's disease. Neurobiol. Aging 21, 383-421 https://doi.org/10.1016/S0197-4580(00)00124-X
  3. Akterin, S., Cowburn, R.F., Miranda-Vizuete, A., Jimenez, A., Bogdanovic, N., Winblad, B., and Cedazo-Minguez, A. (2006). Involvement of glutaredoxin-1 and thioredoxin-1 in betaamyloid toxicity and Alzheimer's disease. Cell Death Differ. 13, 1454-1465 https://doi.org/10.1038/sj.cdd.4401818
  4. Anest, V., Hanson, J.L., Cogswell, P.C., Steinbrecher, K.A., Strahl, B.D., and Baldwin, A.S. (2003). A nucleosomal function for IkappaB kinase-alpha in NF-kappaB-dependent gene expression. Nature 423, 659-663 https://doi.org/10.1038/nature01648
  5. Apetoh, L., Ghiringhelli, F., Tesniere, A., Obeid, M., Ortiz, C., Criollo, A., Mignot, G., Maiuri, M.C., Ullrich, E., Saulnier, P., et al. (2007). Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 13, 1050-1059 https://doi.org/10.1038/nm1622
  6. Appay, V., and Sauce, D. (2008). Immune activation and inflammation in HIV-1 infection, causes and consequences. J. Pathol. 214, 231-241 https://doi.org/10.1002/path.2276
  7. Arkan, M.C., Hevener, A.L., Greten, F.R., Maeda, S., Li, Z.W., Long, J.M., Wynshaw-Boris, A., Poli, G., Olefsky, J., and Karin, M. (2005). IKK-beta links inflammation to obesityinduced insulin resistance. Nat. Med. 11, 191-198 https://doi.org/10.1038/nm1185
  8. Asmis, R., Wang, Y., Xu, L., Kisgati, M., Begley, J.G., and Mieyal, J.J. (2005). A novel thiol oxidation-based mechanism for adriamycin-induced cell injury in human macrophages. FASEB J. 19, 1866-1868 https://doi.org/10.1096/fj.04-2991fje
  9. Aviram, M., Rosenblat, M., Billecke, S., Erogul, J., Sorenson, R., Bisgaier, C.L., Newton, R.S., and La Du, B. (1999a). Human serum paraoxonase (PON 1) is inactivated by oxidized low density lipoprotein and preserved by antioxidants. Free Radic. Biol. Med. 26, 892-904 https://doi.org/10.1016/S0891-5849(98)00272-X
  10. Aviram, M., Rosenblat, M., Billecke, S., Erogul, J., Sorenson, R., Bisgaier, C.L., Newton, R.S., and La Du, B. (1999b). Human serum paraoxonase (PON 1). is inactivated by oxidized low density lipoprotein and preserved by antioxidants. Free Radic. Biol. Med. 26, 892-904 https://doi.org/10.1016/S0891-5849(98)00272-X
  11. Bertini, R., Howard, O.M., Dong, H.F., Oppenheim, J.J., Bizzarri, C., Sergi, R., Caselli, G., Pagliei, S., Romines, B., Wilshire, J.A., et al. (1999). Thioredoxin, a redox enzyme released in infection and inflammation, is a unique chemoattractant for neutrophils, monocytes, and T cells. J. Exp. Med. 189, 1783-1789 https://doi.org/10.1084/jem.189.11.1783
  12. Biragyn, A., Ruffini, P.A., Leifer, C.A., Klyushnenkova, E., Shakhov, A., Chertov, O., Shirakawa, A.K., Farber, J.M., Segal, D.M., Oppenheim, J.J., et al. (2002). Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 298, 1025-1029 https://doi.org/10.1126/science.1075565
  13. Blaber, R., Stylianou, E., Clayton, A., and Steadman, R. (2003). Selective regulation of ICAM-1 and RANTES gene expression after ICAM-1 ligation on human renal fibroblasts. J. Am. Soc. Nephrol. 14, 116-127 https://doi.org/10.1097/01.ASN.0000040595.35207.62
  14. Bobryshev, Y.V. (2006). Monocyte recruitment and foam cell formation in atherosclerosis. Micron 37, 208-222 https://doi.org/10.1016/j.micron.2005.10.007
  15. Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813-820 https://doi.org/10.1038/414813a
  16. Cai, D., Yuan, M., Frantz, D.F., Melendez, P.A., Hansen, L., Lee, J., and Shoelson, S.E. (2005). Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NFkappaB. Nat. Med. 11, 183-190 https://doi.org/10.1038/nm1166
  17. Chrestensen, C.A., Starke, D.W., and Mieyal, J. J. (2000). Acute cadmium exposure inactivates thioltransferase (Glutaredoxin), inhibits intracellular reduction of protein-glutathionyl-mixed disulfides, and initiates apoptosis. J. Biol. Chem. 275, 26556-26565 https://doi.org/10.1074/jbc.M004097200
  18. Chu, F., Ward, N.E., and O'Brian, C.A. (2001). Potent inactivation of representative members of each PKC isozyme subfamily and PKD via S-thiolation by the tumor-promotion/progresssion antagonist glutathione but not by its precursor cysteine. Carcinogenesis 22, 1221-1229 https://doi.org/10.1093/carcin/22.8.1221
  19. Chuang, K.P., Tsai, W.S., Wang, Y.J., and Shieh, C.C. (2003). Superoxide activates very late antigen-4 on an eosinophil cell line and increases cellular binding to vascular cell adhesion molecule-1. Eur. J. Immunol. 33, 645-655 https://doi.org/10.1002/eji.200323446
  20. Church, L.D., Cook, G.P., and McDermott, M.F. (2008). Primer, inflammasomes and interleukin 1beta in inflammatory disorders. Nat. Clin. Pract. Rheumatol. 4, 34-42 https://doi.org/10.1038/ncprheum0681
  21. Clavreul, N., Adachi, T., Pimental, D.R., Ido, Y., Schoneich, C., and Cohen, R.A. (2006a). S-glutathiolation by peroxynitrite of p21ras at cysteine-118 mediates its direct activation and downstream signaling in endothelial cells. FASEB J. 20, 518-520 https://doi.org/10.1096/fj.05-4875fje
  22. Clavreul, N., Bachschmid, M.M., Hou, X., Shi, C., Idrizovic, A., Ido, Y., Pimentel, D., and Cohen, R.A. (2006b). Sglutathiolation of p21ras by peroxynitrite mediates endothelial insulin resistance caused by oxidized low-density lipoprotein. Arterioscler. Thromb. Vasc. Biol. 26, 2454-2461 https://doi.org/10.1161/01.ATV.0000242791.28953.4c
  23. Clayton, A., Evans, R.A., Pettit, E., Hallett, M., Williams, J.D., and Steadman, R. (1998). Cellular activation through the ligation of intercellular adhesion molecule-1. J. Cell Sci. 111(Pt 4), 443-453
  24. Cruz, C.M., Rinna, A., Forman, H.J., Ventura, A.L., Persechini, P.M., and Ojcius, D.M. (2007). ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J. Biol. Chem. 282, 2871-2879 https://doi.org/10.1074/jbc.M608083200
  25. Dai, J., Wang, P., Bai, F., Town, T., and Fikrig, E. (2008). Icam-1 participates in the entry of west nile virus into the central nervous system. J. Virol. 82, 4164-4168 https://doi.org/10.1128/JVI.02621-07
  26. Davis, D.A., Dorsey, K., Wingfield, P.T., Stahl, S.J., Kaufman, J., Fales, H.M., and Levine, R.L. (1996). Regulation of HIV-1 protease activity through cysteine modification. Biochemistry 35, 2482-2488 https://doi.org/10.1021/bi951525k
  27. Davis, D.A., Newcomb, F.M., Starke, D.W., Ott, D.E., Mieyal, J.J., and Yarchoan, R. (1997). Thioltransferase (glutaredoxin). is detected within HIV-1 and can regulate the activity of glutathionylated HIV-1 protease in vitro. J. Biol. Chem. 272, 25935-25940 https://doi.org/10.1074/jbc.272.41.25935
  28. Davis, D.A., Brown, C.A., Newcomb, F.M., Boja, E.S., Fales, H.M., Kaufman, J., Stahl, S.J., Wingfield, P., and Yarchoan, R. (2003). Reversible oxidative modification as a mechanism for regulating retroviral protease dimerization and activation. J. Virol. 77, 3319-3325 https://doi.org/10.1128/JVI.77.5.3319-3325.2003
  29. Demasi, M., Silva, G.M., and Netto, L.E. (2003). 20 S proteasome from Saccharomyces cerevisiae is responsive to redox modifycations and is S-glutathionylated. J. Biol. Chem. 278, 679-685 https://doi.org/10.1074/jbc.M209282200
  30. De Rose, V. (2002). Mechanisms and markers of airway inflammation in cystic fibrosis. Eur. Respir. J. 19, 333-340 https://doi.org/10.1183/09031936.02.00229202
  31. Eugenin, E.A., Morgello, S., Klotman, M.E., Mosoian, A., Lento, P.A., Berman, J.W., and Schecter, A.D. (2008). Human immunodeficiency virus (HIV). Infects human arterial smooth muscle cells in vivo and in vitro, implications for the pathogenesis of HIV-mediated vascular disease. Am. J. Pathol. 172, 1100-1111 https://doi.org/10.2353/ajpath.2008.070457
  32. Flekac, M., Skrha, J., Zidkova, K., Lacinova, Z., and Hilgertova, J. (2007). Paraoxonase 1 gene polymorphisms and enzyme activities in diabetes mellitus. Physiol Res. [Epub ahead of print]
  33. Foell, D., Wittkowski, H., and Roth, J. (2007). Mechanisms of disease, a 'DAMP' view of inflammatory arthritis. Nat. Clin. Pract. Rheumatol, 3, 382-390 https://doi.org/10.1038/ncprheum0531
  34. Forman, H.J., and Torres, M. (2001). Redox signaling in macrophages. Mol. Aspects Med. 22, 189-216 https://doi.org/10.1016/S0098-2997(01)00010-3
  35. Fratelli, M., Demol, H., Puype, M., Casagrande, S., Eberini, I., Salmona, M., Bonetto, V., Mengozzi, M., Duffieux, F., Miclet, E., et al. (2002). Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytes. Proc. Natl. Acad. Sci. USA 99, 3505-3510
  36. Gallogly, M.M., and Mieyal, J.J. (2007). Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Curr. Opin. Pharmacol. 7, 381-391 https://doi.org/10.1016/j.coph.2007.06.003
  37. Gho, Y.S., Kleinman, H.K., and Sosne, G. (1999). Angiogenic activity of human soluble intercellular adhesion molecule-1. Cancer Res. 59, 5128-5132
  38. Gravina, S.A., and Mieyal, J.J. (1993). Thioltransferase is a specific glutathionyl mixed disulfide oxidoreductase. Biochemistry 32, 3368-3376 https://doi.org/10.1021/bi00064a021
  39. Hagemann, T., Balkwill, F., and Lawrence, T. (2007). Inflammation and cancer, a double-edged sword. Cancer Cell 12, 300-301 https://doi.org/10.1016/j.ccr.2007.10.005
  40. Harja, E., Bu, D.X., Hudson, B.I., Chang, J.S., Shen, X., Hallam, K., Kalea, A.Z., Lu, Y., Rosario, R.H., Oruganti, S., et al. (2008). Vascular and inflammatory stresses mediate atherosclerosis via RAGE and its ligands in apoE-/- mice. J. Clin. Invest. 118, 183-194 https://doi.org/10.1172/JCI32703
  41. Harris, H.E., and Andersson, U. (2004). Mini-review, The nuclear protein HMGB1 as a proinflammatory mediator. Eur. J. Immunol. 34, 1503-1512 https://doi.org/10.1002/eji.200424916
  42. Harris, H.E., and Raucci, A. (2006). Alarmin(g) news about danger, workshop on innate danger signals and HMGB1. EMBO Rep. 7, 774-778
  43. Hirota, K., Matsui, M., Murata, M., Takashima, Y., Cheng, F.S., Itoh, T., Fukuda, K., and Yodoi, J. (2000). Nucleoredoxin, glutaredoxin, and thioredoxin differentially regulate NF-kappaB, AP-1, and CREB activation in HEK293 cells. Biochem. Biophys. Res. Commun. 274, 177-182 https://doi.org/10.1006/bbrc.2000.3106
  44. Hoppe, G., Talcott, K.E., Bhattacharya, S.K., Crabb, J.W., and Sears, J.E. (2006). Molecular basis for the redox control of nuclear transport of the structural chromatin protein Hmgb1. Exp. Cell Res. 312, 3526-3538 https://doi.org/10.1016/j.yexcr.2006.07.020
  45. Jahngen-Hodge, J., Obin, M.S., Gong, X., Shang, F., Nowell, T.R., Jr., Gong, J., Abasi, H., Blumberg, J., and Taylor, A. (1997). Regulation of ubiquitin-conjugating enzymes by glutathione following oxidative stress. J. Biol. Chem. 272, 28218-28226 https://doi.org/10.1074/jbc.272.45.28218
  46. Kasama, T., Yajima, N., Matsukura, S., and Adachi, M. (2006). Macrophage inflammatory protein 1 and CCR5 as attractive therapeutic targets for HIV infection. Recent Patents Anti-Infect. Drug Disc. 1, 275-280 https://doi.org/10.2174/157489106778777655
  47. Kusterer, K., Bojunga, J., Enghofer, M., Heidenthal, E., Usadel, K.H., Kolb, H., and Martin, S. (1998). Soluble ICAM-1 reduces leukocyte adhesion to vascular endothelium in ischemiareperfusion injury in mice. Am. J. Physiol. 275, G377-G380
  48. Lawrence, T., Bebien, M., Liu, G.Y., Nizet, V., and Karin, M. (2005). IKKalpha limits macrophage NF-kappaB activation and contributes to the resolution of inflammation. Nature 434, 1138-1143 https://doi.org/10.1038/nature03491
  49. Li, Z.W., Chu, W., Hu, Y., Delhase, M., Deerinck, T., Ellisman, M., Johnson, R., and Karin, M. (1999). The IKKbeta subunit of IkappaB kinase (IKK). is essential for nuclear factor kappaB activation and prevention of apoptosis. J. Exp. Med. 189, 1839-1845 https://doi.org/10.1084/jem.189.11.1839
  50. Li, X., Massa, P.E., Hanidu, A., Peet, G.W., Aro, P., Savitt, A., Mische, S., Li, J., and Marcu, K.B. (2002). IKKalpha, IKKbeta, and NEMO/IKKgamma are each required for the NF-kappa Bmediated inflammatory response program. J. Biol. Chem. 277, 45129-45140 https://doi.org/10.1074/jbc.M205165200
  51. Li, X., Xu, Z., Li, S., and Rozanski, G.J. (2005). Redox regulation of Ito remodeling in diabetic rat heart. Am. J. Physiol. Heart Circ. Physiol. 288, H1417-H1424 https://doi.org/10.1152/ajpheart.00559.2004
  52. Liu, S.Y., Tsai, M.Y., Chuang, K.P., Huang, Y.F., and Shieh, C.C. (2008). Ligand binding of leukocyte integrin very late antigen- 4 involves exposure of sulfhydryl groups and is subject to redox modulation. Eur. J. Immunol. 38, 410-423 https://doi.org/10.1002/eji.200737556
  53. Lundberg, M., Fernandes, A.P., Kumar, S., and Holmgren, A. (2004). Cellular and plasma levels of human glutaredoxin 1 and 2 detected by sensitive ELISA systems. Biochem. Biophys. Res. Commun. 319, 801-809 https://doi.org/10.1016/j.bbrc.2004.04.199
  54. Madden, E., Lee, G., Kotler, D.P., Wanke, C., Lewis, C.E., Tracy, R., Heymsfield, S., Shlipak, M.G., Bacchetti, P., Scherzer, R., et al. (2008). Association of antiretroviral therapy with fibrinogen levels in HIV-infection. AIDS 22, 707-715 https://doi.org/10.1097/QAD.0b013e3282f560d9
  55. Mariathasan, S., and Monack, D.M. (2007). Inflammasome adaptors and sensors, intracellular regulators of infection and inflammation. Nat. Rev. Immunol. 7, 31-40 https://doi.org/10.1038/nri1997
  56. Melendez, M.M., McNurlan, M.A., Mynarcik, D.C., Khan, S., and Gelato, M.C. (2008). Endothelial adhesion molecules are associated with inflammation in subjects with HIV disease. Clin. Infect Dis. 46, 775-780 https://doi.org/10.1086/527563
  57. Mieyal, J.J., Gallogly, M.M., Qanungo, S., Sabens, S.A., and Shelton, M.D. (2008). Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid Redox Signal. (in press)
  58. Mukherjee, T.K., Mishra, A.K., Mukhopadhyay, S., and Hoidal, J.R. (2007). High concentration of antioxidants N-acetylcysteine and mitoquinone-Q induces intercellular adhesion molecule 1 and oxidative stress by increasing intracellular glutathione. J. Immunol. 178, 1835-1844 https://doi.org/10.4049/jimmunol.178.3.1835
  59. Murata, H., Ihara, Y., Nakamura, H., Yodoi, J., Sumikawa, K., and Kondo, T. (2003). Glutaredoxin exerts an antiapoptotic effect by regulating the redox state of Akt. J. Biol. Chem. 278, 50226-50233 https://doi.org/10.1074/jbc.M310171200
  60. Muro, S., Gajewski, C., Koval, M., and Muzykantov, V.R. (2005). ICAM-1 recycling in endothelial cells, a novel pathway for sustained intracellular delivery and prolonged effects of drugs. Blood 105, 650-658 https://doi.org/10.1182/blood-2004-05-1714
  61. Nakamura, H., Vaage, J., Valen, G., Padilla, C.A., Bjornstedt, M., and Holmgren, A. (1998). Measurements of plasma glutaredoxin and thioredoxin in healthy volunteers and during openheart surgery. Free Radic. Biol. Med. 24, 1176-1186 https://doi.org/10.1016/S0891-5849(97)00429-2
  62. Nakamura, H., Bai, J., Nishinaka, Y., Ueda, S., Sasada, T., Ohshio, G., Imamura, M., Takabayashi, A., Yamaoka, Y., and Yodoi, J. (2000). Expression of thioredoxin and glutaredoxin, redox-regulating proteins, in pancreatic cancer. Cancer Detect. Prev. 24, 53-60
  63. Newman, S.F., Sultana, R., Perluigi, M., Coccia, R., Cai, J., Pierce, W.M., Klein. J.B., Turner, D.M., and Butterfield, D.A. (2007). An increase in S-glutathionylated proteins in the Alzheimer's disease inferior parietal lobule, a proteomics approach. J. Neurosci. Res. 85, 1506-1514 https://doi.org/10.1002/jnr.21275
  64. Nishio, E., and Watanabe, Y. (1997). Cigarette smoke extract inhibits plasma paraoxonase activity by modification of the enzyme's free thiols. Biochem. Biophys. Res. Commun. 236, 289-293 https://doi.org/10.1006/bbrc.1997.6961
  65. Obin, M., Shang, F., Gong, X., Handelman, G., Blumberg, J., and Taylor, A. (1998). Redox regulation of ubiquitin-conjugating enzymes, mechanistic insights using the thiol-specific oxidant diamide. FASEB J. 12, 561-569 https://doi.org/10.1096/fasebj.12.7.561
  66. Okuda, M., Inoue, N., Azumi, H., Seno, T., Sumi, Y., Hirata, K., Kawashima, S., Hayashi, Y., Itoh, H., Yodoi, J., et al. (2001). Expression of glutaredoxin in human coronary arteries, its potential role in antioxidant protection against atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 21, 1483-1487 https://doi.org/10.1161/hq0901.095550
  67. Pan, S., and Berk, B.C. (2007). Glutathiolation regulates tumor necrosis factor-alpha-induced caspase-3 cleavage and apoptosis, key role for glutaredoxin in the death pathway. Circ. Res. 100, 213-219 https://doi.org/10.1161/01.RES.0000256089.30318.20
  68. Peltoniemi, M., Kaarteenaho-Wiik, R., Saily, M., Sormunen, R., Paakko, P., Holmgren, A., Soini, Y., and Kinnula, V.L. (2004). Expression of glutaredoxin is highly cell specific in human lung and is decreased by transforming growth factor-beta in vitro and in interstitial lung diseases in vivo. Hum. Pathol. 35, 1000-1007 https://doi.org/10.1016/j.humpath.2004.04.009
  69. Peltoniemi, M.J., Rytila, P.H., Harju, T.H., Soini, Y.M., Salmenkivi, K.M., Ruddock, L.W., and Kinnula, V.L. (2006). Modulation of glutaredoxin in the lung and sputum of cigarette smokers and chronic obstructive pulmonary disease. Respir. Res. 7, 133 https://doi.org/10.1186/1465-9921-7-133
  70. Perkins, N.D. (2007). Integrating cell-signalling pathways with NFkappaB and IKK function. Nat. Rev. Mol. Cell Biol. 8, 49-62 https://doi.org/10.1038/nrm2083
  71. Petrilli, V., Dostert, C., Muruve, D.A., and Tschopp, J. (2007). The inflammasome, a danger sensing complex triggering innate immunity. Curr. Opin. Immunol. 19, 615-622 https://doi.org/10.1016/j.coi.2007.09.002
  72. Pineda-Molina, E., Klatt, P., Vázquez, J., Marina, A., García, de Lacoba M., Pérez-Sala, D., and Lamas, S. (2001). Glutathionylation of the p50 subunit of NF-kappaB, a mechanism for redox-induced inhibition of DNA binding. Biochemistry 40, 14134-14142 https://doi.org/10.1021/bi011459o
  73. Prinarakis, E., Chantzoura, E., Thanos, D., and Spyrou, G. (2008). S-glutathionylation of IRF3 regulates IRF3-CBP interaction and activation of the IFNbeta pathway. EMBO J. 27, 865-875 https://doi.org/10.1038/emboj.2008.28
  74. Pujades, C., Teixido, J., Bazzoni, G., and Hemler, M.E. (1996). Integrin alpha 4 cysteines 278 and 717 modulate VLA-4 ligand binding and also contribute to alpha 4/180 formation. Biochem. J. 313(Pt 3), 899-908 https://doi.org/10.1042/bj3130899
  75. Qanungo, S., Starke, D.W., Pai, H.V., Mieyal, J.J., and Nieminen, A.L. (2007). Glutathione supplementation potentiates hypoxic apoptosis by S-glutathionylation of p65-NFkappaB. J. Biol. Chem. 282, 18427-18436 https://doi.org/10.1074/jbc.M610934200
  76. Reingold, J.S., Wanke, C., Kotler, D.P., Lewis, C.E., Tracy, R., Heyms Filig, E.S., Tien, P.C., Bacchetti, P., Scherzer, R., Grunfeld, C., et al. (2008). Association of HIV infection and HIV/HCV coinfection with C-reactive protein levels, the fat redistribution and metabolic change in HIV infection (FRAM). Study. J. Acquir. Immune. Defic. Syndr. [Epub ahead of print]
  77. Reynaert, N.L., van der Vliet, A., Guala, A.S., McGovern, T., Hristova, M., Pantano, C., Heintz, N.H., Heim, J., Ho, Y.S., Matthews, D.E., Wouters, E.F., et al. (2006). Dynamic redox control of NF-kappaB through glutaredoxin-regulated Sglutathionylation of inhibitory kappaB kinase beta. Proc. Natl. Acad. Sci. USA 103, 13086-13091
  78. Reynaert, N.L., Wouters, E.F., and Janssen-Heininger, Y.M. (2007). Modulation of glutaredoxin-1 expression in a mouse model of allergic airway disease. Am. J. Respir. Cell Mol. Biol. 36, 147-151 https://doi.org/10.1165/rcmb.2006-0259RC
  79. Romeo, G., Liu, W.H., Asnaghi, V., Kern, T.S., and Lorenzi, M. (2002). Activation of nuclear factor-kappaB induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes. Diabetes 51, 2241-2248 https://doi.org/10.2337/diabetes.51.7.2241
  80. Rosenblat, M., Vaya, J., Shih, D., and Aviram, M. (2005). Paraoxonase 1 (PON1) enhances HDL-mediated macrophage cholesterol efflux via the ABCA1 transporter in association with increased HDL binding to the cells, a possible role for lysophosphatidylcholine. Atherosclerosis 179, 69-77 https://doi.org/10.1016/j.atherosclerosis.2004.10.028
  81. Rozenberg, O., and Aviram, M. (2006). S-Glutathionylation regulates HDL-associated paraoxonase 1 (PON1) activity. Biochem. Biophys. Res. Commun. 351, 492-498 https://doi.org/10.1016/j.bbrc.2006.10.059
  82. Sano, H., Nakagawa, N., Chiba, R., Kurasawa, K., Saito, Y., and Iwamoto, I. (1998). Cross-linking of intercellular adhesion molecule-1 induces interleukin-8 and RANTES production through the activation of MAP kinases in human vascular endothelial cells. Biochem. Biophys. Res. Commun. 250, 694-698 https://doi.org/10.1006/bbrc.1998.9385
  83. Scheidereit, C. (2006). IkappaB kinase complexes, gateways to NF-kappaB activation and transcription. Oncogene 25, 6685-6705 https://doi.org/10.1038/sj.onc.1209934
  84. Schmid, H., Boucherot, A., Yasuda, Y., Henger, A., Brunner, B., Eichinger, F., Nitsche, A., Kiss, E., Bleich, M., Gröne, H.J., et al. (2006). Modular activation of nuclear factor-kappaB transcriptional programs in human diabetic nephropathy. Diabetes 55, 2993-3003 https://doi.org/10.2337/db06-0477
  85. Seong, S.Y., and Matzinger, P. (2004). Hydrophobicity, an ancient damage-associated molecular pattern that initiates innate immune responses. Nat. Rev. Immunol. 4, 469-478 https://doi.org/10.1038/nri1372
  86. Shelton, M.D., Chock, P.B., and Mieyal, J.J. (2005). Glutaredoxin, role in reversible protein s-glutathionylation and regulation of redox signal transduction and protein translocation. Antioxid Redox Signal. 7, 348-366 https://doi.org/10.1089/ars.2005.7.348
  87. Shelton, M.D., Kern, T.S., and Mieyal, J.J. (2007). Glutaredoxin regulates nuclear factor kappa-B and intercellular adhesion molecule in muller cells, model of diabetic retinopathy. J. Biol. Chem. 282, 12467-12474 https://doi.org/10.1074/jbc.M610863200
  88. Shepherd, C.E., Grace, E.M., Mann, D.M., and Halliday, G.M. (2007). Relationship between neuronal loss and 'inflammatory plaques' in early onset Alzheimer's disease. Neuropathol. Appl. Neurobiol. 33, 328-333 https://doi.org/10.1111/j.1365-2990.2006.00816.x
  89. Shih, D.M., Xia, Y.R., Wang, X.P., Miller, E., Castellani, L.W., Subbanagounder, G., Cheroutre, H., Faull, K.F., Berliner, J.A., Witztum, J.L., et al. (2000). Combined serum paraoxonase knockout/apolipoprotein E knockout mice exhibit increased lipoprotein oxidation and atherosclerosis. J. Biol. Chem. 275, 17527-17535 https://doi.org/10.1074/jbc.M910376199
  90. Shoelson, S.E., Lee, J., and Yuan, M. (2003). Inflammation and the IKK[beta]//I[kappa]B//NF-[kappa]B axis in obesity- and diet-induced insulin resistance. Int. J. Obes Relat. Metab. Disord. 27, S49-S52 https://doi.org/10.1038/sj.ijo.0802501
  91. Singh, S., Venketesh, S., Verma, J.S., Verma, M., Lellamma, C.O., and Goel, R.C. (2007). Paraoxonase (PON1). activity in north west Indian Punjabis with coronary artery disease & type 2 diabetes mellitus. Indian J. Med. Res. 125, 783-787
  92. Starke, D.W., Chock, P.B., and Mieyal, J.J. (2003). Glutathionethiyl radical scavenging and transferase properties of human glutaredoxin (thioltransferase). Potential role in redox signal transduction. J. Biol. Chem. 278, 14607-14613 https://doi.org/10.1074/jbc.M210434200
  93. Takashima, Y., Hirota, K., Nakamura, H., Nakamura, T., Akiyama, K., Cheng, F.S., Maeda, M., and Yodoi, J. (1999). Differential expression of glutaredoxin and thioredoxin during monocytic differentiation. Immunol. Lett. 68, 397-401 https://doi.org/10.1016/S0165-2478(99)00087-5
  94. Teppo, A.M., von, W.E., Honkanen, E., Ahonen, J., and Gronhagen- Riska, C. (2001). Soluble intercellular adhesion molecule- 1 (sICAM-1). after kidney transplantation, the origin and role of urinary sICAM-1? Transplantation 71, 1113-1119 https://doi.org/10.1097/00007890-200104270-00018
  95. Tesch, G.H. (2007). Role of macrophages in complications of type 2 diabetes. Clin. Exp. Pharmacol. Physiol. 34, 1016-1019 https://doi.org/10.1111/j.1440-1681.2007.04729.x
  96. Thomas, J.A., Poland, B., and Honzatko, R. (1995). Protein sulfhydryls and their role in the antioxidant function of protein Sthiolation. Arch. Biochem. Biophys. 319, 19
  97. Tward, A., Xia, Y.R., Wang, X.P., Shi, Y.S., Park, C., Castellani, L.W., Lusis, A.J., and Shih, D.M. (2002). Decreased atherosclerotic lesion formation in human serum paraoxonase transgenic mice. Circulation 106, 484-490 https://doi.org/10.1161/01.CIR.0000023623.87083.4F
  98. van Beijnum, J.R., Buurman, W.A., and Griffioen, A.W. (2008). Convergence and amplification of toll-like receptor (TLR). and receptor for advanced glycation end products (RAGE). signaling pathways via high mobility group B1 (HMGB1). Angiogenesis 11, 91-99 https://doi.org/10.1007/s10456-008-9093-5
  99. Wang, J., Pan, S., and Berk, B.C. (2007). Glutaredoxin mediates Akt and eNOS activation by flow in a glutathione reductasedependent manner. Arterioscler. Thromb. Vasc. Biol. 27, 1283-1288 https://doi.org/10.1161/ATVBAHA.107.144659
  100. Wang, W., Oliva, C., Li, G., Holmgren, A., Lillig, C.H., and Kirk, K.L. (2005). Reversible silencing of CFTR chloride channels by glutathionylation. J. Gen. Physiol. 125, 127-141 https://doi.org/10.1085/jgp.200409115
  101. Wang, Y., Qiao, M., Mieyal, J.J., Asmis, L.M., and Asmis, R. (2006). Molecular mechanism of glutathione-mediated protection from oxidized low-density lipoprotein-induced cell injury in human macrophages, role of glutathione reductase and glutaredoxin. Free Radic. Biol. Med. 41, 775-785 https://doi.org/10.1016/j.freeradbiomed.2006.05.029
  102. Ward, N.E., Stewart, J.R., Ioannides, C.G., and O'Brian, C.A. (2000). Oxidant-induced S-glutathiolation inactivates protein kinase C-alpha (PKC-alpha): a potential mechanism of PKC isozyme regulation. Biochemistry 39, 10319-10329 https://doi.org/10.1021/bi000781g
  103. Xiao, C., Bator, C.M., Bowman, V.D., Rieder, E., He, Y., Hebert, B., Baker, T.S., Wimmer, E., Kuhn, R.J., and Rossman, M.G. (2001). Interaction of coxsackievirus A21 with its cellular receptor, ICAM-1. J. Virol. 75, 2444-2451 https://doi.org/10.1128/JVI.75.5.2444-2451.2001
  104. Yang, Y., Jao, S., Nanduri, S., Starke, D.W., Mieyal, J.J., and Qin, J. (1998). Reactivity of the human thioltransferase (glutaredoxin). C7S, C25S, C78S, C82S mutant and NMR solution structure of its glutathionyl mixed disulfide intermediate reflect catalytic specificity. Biochemistry 37, 17145-17156 https://doi.org/10.1021/bi9806504
  105. Zheng, L., Szabo, C., and Kern, T.S. (2004). Poly(ADP-ribose). polymerase is involved in the development of diabetic retinopathy via regulation of nuclear factor-kappaB. Diabetes 53, 2960-2967 https://doi.org/10.2337/diabetes.53.11.2960