• Title/Summary/Keyword: positive initial energy

Search Result 96, Processing Time 0.026 seconds

BLOW UP OF SOLUTIONS WITH POSITIVE INITIAL ENERGY FOR THE NONLOCAL SEMILINEAR HEAT EQUATION

  • Fang, Zhong Bo;Sun, Lu
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.4
    • /
    • pp.235-242
    • /
    • 2012
  • In this paper, we investigate a nonlocal semilinear heat equation with homogeneous Dirichlet boundary condition in a bounded domain, and prove that there exist solutions with positive initial energy that blow up in finite time.

BLOW-UP PHENOMENA OF ARBITRARY POSITIVE INITIAL ENERGY SOLUTIONS FOR A VISCOELASTIC WAVE EQUATION WITH NONLINEAR DAMPING AND SOURCE TERMS

  • Yi, Su-Cheol
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.137-147
    • /
    • 2022
  • In this paper, we considered the Dirichlet initial boundary value problem of a nonlinear viscoelastic wave equation with nonlinear damping and source terms, and investigated finite time blow-up phenomena of the solutions to the equation with arbitrary positive initial data, under suitable conditions.

BLOW-UP OF SOLUTIONS FOR WAVE EQUATIONS WITH STRONG DAMPING AND VARIABLE-EXPONENT NONLINEARITY

  • Park, Sun-Hye
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.633-642
    • /
    • 2021
  • In this paper we consider the following strongly damped wave equation with variable-exponent nonlinearity utt(x, t) - ∆u(x, t) - ∆ut(x, t) = |u(x, t)|p(x)-2u(x, t), where the exponent p(·) of nonlinearity is a given measurable function. We establish finite time blow-up results for the solutions with non-positive initial energy and for certain solutions with positive initial energy. We extend the previous results for strongly damped wave equations with constant exponent nonlinearity to the equations with variable-exponent nonlinearity.

Designing Fault-Tolerant Gaits for Quadruped Robots Using Energy Stability Margins (에너지 안정여유도를 이용한 사족 보행 로봇의 내고장성 걸음새)

  • Yang, Jung-Min
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.7
    • /
    • pp.319-326
    • /
    • 2006
  • This paper proposes a novel fault-tolerant gait for Quadruped robots using energy stability margins. The previously developed fault-tolerant gaits for quadruped robots have a drawback of having marginal stability margin, which may lead to tumbling. In the process of tumbling, the potential energy of the center of gravity goes through a maximum. The larger the difference between the potential energy of the center of gravity of the initial position and that of this maximum, the less the robot tumbles. Hence this difference of potential energy, dubbed as Energy Stability Margin (ESM), can be regarded as the stability margin. In this paper, a novel fault-tolerant gait is presented which gives positive ESM to a quadruped robot suffering from a locked joint failure. Positive ESM is obtained by adjusting foot positions between leg swing sequences. The advantage of the proposed fault-tolerant gait is demonstrated in a case study where a quadruped robot with a failed leg walks on a even slope.

HBr Formation from the Reaction between Gas-phase Bromine Atom and Vibrationally Excited Chemisorbed Hydrogen Atoms on a Si(001)-(2 X1) Surface

  • Ree, J.;Yoon, S.H.;Park, K.G.;Kim, Y.H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.8
    • /
    • pp.1217-1224
    • /
    • 2004
  • We have calculated the probability of HBr formation and energy disposal of the reaction exothermicity in HBr produced from the reaction of gas-phase bromine with highly covered chemisorbed hydrogen atoms on a Si (001)-(2 ${\times}$1) surface. The reaction probability is about 0.20 at gas temperature 1500 K and surface temperature 300 K. Raising the initial vibrational state of the adsorbate(H)-surface(Si) bond from the ground to v = 1, 2 and 3 states causes the vibrational, translational and rotational energies of the product HBr to increase equally. However, the vibrational and translational motions of product HBr share most of the reaction energy. Vibrational population of the HBr molecules produced from the ground state adsorbate-surface bond ($v_{HSi}$ =0) follows the Boltzmann distribution, but it deviates seriously from the Boltzmann distribution when the initial vibrational energy of the adsorbate-surface bond increases. When the vibration of the adsorbate-surface bond is in the ground state, the amount of energy dissipated into the surface is negative, while it becomes positive as vHSi increases. The energy distributions among the various modes weakly depends on surface temperature in the range of 0-600 K, regardless of the initial vibrational state of H(ad)-Si(s) bond.

GLOBAL EXISTENCE AND NONEXISTENCE OF SOLUTIONS FOR COUPLED NONLINEAR WAVE EQUATIONS WITH DAMPING AND SOURCE TERMS

  • Ye, Yaojun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1697-1710
    • /
    • 2014
  • The initial-boundary value problem for a class of nonlinear higher-order wave equations system with a damping and source terms in bounded domain is studied. We prove the existence of global solutions. Meanwhile, under the condition of the positive initial energy, it is showed that the solutions blow up in the finite time and the lifespan estimate of solutions is also given.

Economic Assessment of Biomass Heating for Rural Application (바이오매스를 이용한 농업용 난방계획의 경제성 검토)

  • Hong, Seong-Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.2
    • /
    • pp.45-52
    • /
    • 2005
  • Biomass is one of the most competitive renewable energy resource and can be used for heating for rural applications. A economic assessment was made of biomass heating, using the tool BIOH2000 from $RETScreen^{\circledR}$ International Clean Energy Decision Support Centre. For a 260kW heating system for 50 farm houses, the assessment showed a very promising results. Internal rate of return was $19.7\%$ and year-to-positive cash flow was 5.1 years. Relative price of biomass over fossil fuel significantly affected the economic feasibility of the project. Heating demand was directly related to annual demand of biomass and economic feasibility. Relative cost of distribution pipe over the total initial costs also affected the economic feasibility of the project. The economic feasibility was expected to be improved by the probable greenhouse emission reduction credit and reduction of initial costs through utilizing existing heating system for peak or back up heating system.

GLOBAL WEAK SOLUTIONS FOR THE RELATIVISTIC VLASOV-KLEIN-GORDON SYSTEM IN TWO DIMENSIONS

  • Xiao, Meixia;Zhang, Xianwen
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.591-598
    • /
    • 2018
  • This paper is concerned with global existence of weak solutions to the relativistic Vlasov-Klein-Gordon system. The energy of this system is conserved, but the interaction term ${\int}_{{\mathbb{R}}^n}\;{\rho}{\varphi}dx$ in it need not be positive. So far existence of global weak solutions has been established only for small initial data [9, 14]. In two dimensions, this paper shows that the interaction term can be estimated by the kinetic energy to the power of ${\frac{4q-4}{3q-2}}$ for 1 < q < 2. As a consequence, global existence of weak solutions for general initial data is obtained.

A Study on the Economic Evaluation of Photovoltaic System in the Residential Building (주거용 건물의 태양광 발전시스템 경제성 평가에 관한 연구)

  • Choi, Jeong-Min;Ju, Jai-Wook;Kim, Dong-Gyu
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.14-21
    • /
    • 2009
  • The demand and installation for photovoltaic system(namely, PV) has grown steadily in Korea. However, the PV system has a various economic viability according to the PV system characteristic variables such as inverter efficiency, miscellaneous power conditioning losses, azimuth and slope of PV array, PV tracking mode, and so on. The other variables are the monthly consumed electric energy and economic related factor such as initial cost, government subsidy, maintenance cost, inflation rate, energy cost escalation rate, discount rate, etc. Therefore, this study is to present economic evaluation of PV system with those concerned factors by calculating internal rate of return, year-to-positive cash flow and net present value indices.

A New Cluster Head Selection Technique based on Remaining Energy of Each Node for Energy Efficiency in WSN

  • Subedi, Sagun;Lee, Sang-Il;Lee, Jae-Hee
    • International journal of advanced smart convergence
    • /
    • v.9 no.2
    • /
    • pp.185-194
    • /
    • 2020
  • Designing of a hierarchical clustering algorithm is one of the numerous approaches to minimize the energy consumption of the Wireless Sensor Networks (WSNs). In this paper, a homogeneous and randomly deployed sensor nodes is considered. These sensors are energy constrained elements. The nominal selection of the Cluster Head (CH) which falls under the clustering part of the network protocol is studied and compared to Low Energy Adaptive Clustering Hierarchy (LEACH) protocol. CHs in this proposed process is the function of total remaining energy of each node as well as total average energy of the whole arrangement. The algorithm considers initial energy, optimum value of cluster heads to elect the next group of cluster heads for the network as well as residual energy. Total remaining energy of each node is compared to total average energy of the system and if the result is positive, these nodes are eligible to become CH in the very next round. Analysis and numerical simulations quantify the efficiency and Average Energy Ratio (AER) of the proposed system.