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ABSTRACT. In this paper, we investigate a nonlocal semilinear heat equation with homoge-
neous Dirichlet boundary condition in a bounded domain, and prove that there exist solutions
with positive initial energy that blow up in finite time.

1. INTRODUCTION

In this paper, we consider the initial Dirichlet-boundary problem for nonlocal semilinear
heat equation

ut −∆u+

∫ t

0
g(t− s)∆u(x, s)ds = f(u), x ∈ Ω, t > 0, (1.1)

u(x, t) = 0, x ∈ ∂Ω, t > 0, (1.2)

with the initial condition

u(x, 0) = u0(x) ∈ L∞(Ω) ∩W 1,2
0 (Ω), x ∈ Ω. (1.3)

where Ω ⊂ RN (N ≥ 1) is a bounded domain with sufficient smooth boundary, relaxation
function g : R+ → R+ is a bounded C1 function and nonlinearity f(u) ∈ C(R).

Equation (1.1) arises naturally from a variety of mathematical models in engineering and
physical science. For example, in the study of heat conduction in materials with memory term,
the classical Fourier’s law of heat flux is replaced by the following form:

q = −d∇u−
∫ t

−∞
∇[k(x, t)u(x, τ)]dτ, (1.4)

where u, d and the integral term represent temperature, diffusion coefficient, and the effect of
memory term in the material, respectively. The study of this type of equations has drawn a
considerable attention, see [1-5]. In mathematical view, one would expect the integral term
in the equation to be dominated by the leading term. Therefore, one can apply the theory of
parabolic equations to this type of equations.
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When g = 0 and the nonlinearity is in the form of power function in equation (1.1), problem
(1.1)-(1.3) has been studied by various authors and several results concerning global and non-
global existence have been established. For instance, in the early 1970s, Levine [6] introduced
concavity method and showed that solutions with negative energy blow up in finite time. Later,
this method was improved by Kalantarov et al. [7] to more general situations. Other stud-
ies about equations with gradient term in bounded or unbounded domains, we refer to [8,9].
In addition, for quasilinear equations, there are some results about the influence of initial en-
ergy on blow-up solutions of initial boundary value problem as well. For instance, Zhao [10]
established a nonglobal existence result of blow-up solutions with initial energy satisfying

E(0) =
1

p

∫
Ω
|∇u0(x)|pdx−

∫
Ω
F (u0(x))dx ≤ − 4(p− 1)

pT (p− 2)2

∫
Ω
u20(x)dx,

which was generalized by Levine et al. [11]. Existence results of blow-up solutions with
nonpositive and positive initial energy, one can see [12,13]. Lately, Messaoudi [14] studied
problem (1.1)-(1.3) when there is a memory term (i.e.g ̸= 0) and the nonlinearity is in the
form of power function. He established a blow-up result when initial energy is nonpositive.
For more results about relations between energy and blow-up solutions to nonlocal hyperbolic
equation, we refer to [15] and references therein.

In the works mentioned above, most problems were supposed that the initial energy is neg-
ative or non-positive to ensure the occurrence of blow-up. But to our knowledge, there are few
works about the influence of positive initial energy on blow-up solutions of parabolic equation.
The aim of this paper is to find sufficient condition of existence of blow-up solutions with pos-
itive initial energy when the fully nonlinear term f(u) and relaxation function g satisfy some
proper conditions.

In order to show our result, we assume that f ∈ C(R), F (u) =
∫ u
0 f(s)ds, and

inf{
∫
Ω
F (u)dx : |u| = 1} > 0. (1.5)

Denote by C∗ the optimal constant of Sobolev embedding inequality

(

∫
Ω
F (u)dx)

1
r ≤ C∗∥∇u∥2, u ∈W 1,2

0 (Ω), (1.6)

where r ∈ (2, 2N
N−2 ] is a fixed constant, that is

C−1
∗ = inf

u∈W 1,2
0 (Ω),u ̸=0

∥u∥2
(
∫
Ω F (u)dx)

1
r

.

For relaxation function g, we assume that

g(s) ≥ 0, g′(s) ≤ 0, 1−
∫ ∞

0
g(s)ds = l > 0. (1.7)

We also set

α = B− r
r−2 , E1 = (

1

2
− 1

r
)B− 2r

r−2 = (
1

2
− 1

r
)α2. (1.8)
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where B = C∗/l.
Our main result is as follows:

Theorem 1.1. Let f ∈ C(R) satisfy condition (1.5)(1.6) and

sf(s) ≥ rF (s) ≥ |s|r, r > 2. (1.9)

For g, we let it satisfy (1.7) and ∫ ∞

0
g(s)ds <

1− c0

1− 3
4c0

, (1.10)

where c0 =
1+(r−2)(α1/α2)r

r < 1. If the initial datum is chosen to ensure that

E(0) < E1 (1.11)

and
∥∇u0∥2 > α1, (1.12)

then the strong solution u blows up in finite time.

Remark 1.2. Our result improves the results of Messaoudi [14].

2. THE PROOF OF THEOREM 1.1

In order to prove Theorem 1.1, we first introduce the “modified” energy functional

E(t) =
1

2
(g ◦ ∇u)(t) + 1

2
(1−

∫ ∞

0
g(s)ds)∥∇u(t)∥22 −

∫
Ω
F (u)dx, (2.1)

where

(g ◦ v)(t) =
∫ t

0
g(t− s)∥v(t)− v(s)∥22ds. (2.2)

Multiplying (1.1) with −ut and integrating over Ω, after some manipulations (see [15]), we
get

− d

dt
E(t) = −

∫ t

0
g′(t−s)

∫
Ω

1

2
|∇u(s)−∇u(t)|2dxds+g(t)

∫
Ω

1

2
|∇u(t)|2dx+

∫
Ω
|ut|2dx ≥ 0,

for regular solutions, from which we can deduce that
d

dt
E(t) ≤ 0.

The same result can be established for almost every t by simple density argument.
Similar to [16], we give a definition for a strong solution of (1.1)-(1.3).
Definition A strong solution of (1.1)-(1.3) is a function u ∈ C([0, T );H1

0 (Ω))∩C1([0, T );L2(Ω)),
satisfying d

dtE(t) ≤ 0 and∫ t

0

∫
Ω
(∇u · ∇ϕ−

∫ s

0
∇u(τ) · ∇ϕ(s)dτ + utϕ− f(u)ϕ)dxds = 0

for all t ∈ [0, T ) and all ϕ ∈ C([0, T );H1
0 (Ω)).
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Remark 2.1. The condition 1−
∫∞
0 g(s)ds = l > 0 is necessary to guarantee the parabolicity

of system (1.1)-(1.3).

We prove the following two lemmas by using the idea of Vitillaro in [17].

Lemma 2.2. Suppose that u is a strong solution of (1.1)-(1.3), andE(0) < E1, ∥∇u0∥2 > α1,
then there exists a positive constant α2 > α1, so that

[(1−
∫ ∞

0
g(s)ds)∥∇u∥22 + (g ◦ ∇u)(t)]

1
2 ≥ α2, (2.3)

(

∫
Ω
rF (u)dx)

1
r ≥ Bα2. (2.4)

Proof. First, by (1.6), we can get

E(t) =
1

2
(g ◦ ∇u)(t) + 1

2
(1−

∫ t

0
g(s)ds)∥∇u∥22 −

∫
Ω
F (u)dx

≥ 1

2
(g ◦ ∇u)(t) + 1

2
(1−

∫ t

0
g(s)ds)∥∇u∥22 −

1

r
Br∥∇u∥r2

≥ 1

2
(g ◦ ∇u)(t) + 1

2
(1−

∫ t

0
g(s)ds)∥∇u∥22

−1

r
Br[(1−

∫ t

0
g(s)ds)∥∇u∥22 + (g ◦ ∇u)(t)]

r
2

=
1

2
ζ2 − Br

r
ζr

.
= h(ζ), (2.5)

where ζ = (1−
∫ t
0 g(s)ds)∥∇u∥

2
2 + (g ◦ ∇u)(t).

It is easy to see that h is increasing for 0 < ζ < α1 and decreasing for ζ > α1; h(ζ) → −∞
as ζ → +∞ and h(α1) = E1, where α1 and E1 are constants defined in (1.8). Since E(0) <
E1, ∥∇u0∥2 > α1, we can know that there exists a constant α2 > α1 such that E(0) = h(α2).
Then by (2.5), we have h(∥∇u0∥2) < E(0) = h(α2), which implies that ∥∇u0∥2 ≥ α2.

To establish (2.3), we assume that there exists a t0 > 0 such that

[(1−
∫ t0

0
g(s)ds)∥∇u∥22 + (g ◦ ∇u)(t0)]

1
2 < α2.

Because of the continuity of (1−
∫ t
0 g(s)ds)∥∇u∥

2
2 + (g ◦∇u)(t), we can choose t0 such that

[(1−
∫ t0

0
g(s)ds)∥∇u∥22 + (g ◦ ∇u)(t0)]

1
2 > α1.

And from (2.5), we get

E(t0) ≥ h([(1−
∫ t0

0
g(s)ds)∥∇u∥22 + (g ◦ ∇u)(t0)]

1
2 ) > h(α2) = E(0),

which is impossible according to Lemma 1, then (2.3) is established.
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It follows from (2.1) that∫
Ω
F (u)dx ≥ 1

2
(g ◦ ∇u)(t) + 1

2
(1−

∫ t

0
g(s)ds)∥∇u∥22 − E(0)

≥ 1

2
α2
2 − h(α2) =

Br

r
αr
2,

from which we can draw inequality (2.4), then the proof is complete. �
Setting

H(t) = E1 −E(t), t ≥ 0, (2.6)

we have the following Lemma:

Lemma 2.3. Suppose that E(0) < E1, then for all t ≥ 0,

0 < H(0) ≤ H(t) ≤
∫
Ω
F (u)dx. (2.7)

Proof. By d
dtE(t) ≤ 0, we have

d

dt
H(t) ≥ 0,

and thus
H(t) ≥ H(0) = E1 − E(0) > 0, t ≥ 0.

From (2.1) and (2.6), we have

H(t) = E1 −
1

2
(g ◦ ∇u)(t)− 1

2
(1−

∫ t

0
g(s)ds)∥∇u∥22 +

∫
Ω
F (u)dx.

From (2.3) and (2.5), we then obtain that

E1 −
1

2
[(1−

∫ t

0
g(s)ds)∥∇u∥22 + (g ◦ ∇u)(t)]

≤ E1 −
1

2
α2
2 ≤ E1 −

1

2
α2
1 = −1

r
α2
1 < 0, ∀t ≥ 0,

which guarantees H(t) ≤
∫
Ω F (u)dx. The proof is complete. �

Proof of Theorem 1.1 We define L(t) = 1
2

∫
Ω u

2(x, t)dx and differentiate L to get

L′(t) =

∫
Ω
uutdx

=

∫
Ω
u(∆u−

∫ t

0
g(t− s)∆u(x, s)ds+ f(u)]dx

= −
∫
Ω
|∇u|2dx+

∫ t

0
g(t− s)

∫
Ω
∇u(x, t) · ∇u(x, s)dxds+

∫
Ω
uf(u)dx

= −
∫
Ω
|∇u|2dx+

∫ t

0
g(t− s)

∫
Ω
∇u(x, t) · [∇u(x, s)−∇u(x, t)]
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≥ −
∫
Ω
|∇u|2dx−

∫ t

0
g(t− s)

∫
Ω
|∇u(x, t) · [∇u(x, s)−∇u(x, t)]|

+

∫ t

0
g(t− s)∥∇u(x, t)∥22ds+ r

∫
Ω
F (u)dx. (2.8)

By using Schwartz inequality, we have,

L′(t) ≥ r

∫
Ω
F (u)dx− (1−

∫ t

0
g(s)ds)∥∇u∥22

−
∫ t

0
g(t− s)∥∇u(x, t)∥2∥∇u(x, s)−∇u(x, t)∥2ds, (2.9)

Then by using Young inequality to the last term, we get

L′(t) ≥ r

∫
Ω
F (u)dx− (1− 3

4

∫ t

0
g(s)ds)∥∇u(x, t)∥22 − (g ◦ ∇u)(t). (2.10)

Next from (2.9), we deduce that

∥∇u(x, t)∥22 =
1

1−
∫ t
0 g(s)ds

[2E(t)− (g ◦ ∇u)(t) + 2

∫
Ω
F (u)dx]

. Substitute into (2.10), we arrive at

L′(t) ≥ r

∫
Ω
F (u)dx− 2

1− 3
4

∫ t
0 g(s)ds

1−
∫ t
0 g(s)ds

E(t) +
1− 3

4

∫ t
0 g(s)ds

1−
∫ t
0 g(s)ds

(g ◦ ∇u)(t)

−2
1− 3

4

∫ t
0 g(s)ds

1−
∫ t
0 g(s)ds

∫
Ω
F (u)dx− (g ◦ ∇u)(t)

= r

∫
Ω
F (u)dx+ 2

1− 3
4

∫ t
0 g(s)ds

1−
∫ t
0 g(s)ds

(H(t)− E1)

+[
1− 3

4

∫ t
0 g(s)ds

1−
∫ t
0 g(s)ds

− 1](g ◦ ∇u)(t)− 2
1− 3

4

∫ t
0 g(s)ds

1−
∫ t
0 g(s)ds

∫
Ω
F (u)dx. (2.11)

By combining (2.4) and Lemma 2.2, we get that

L′(t) ≥ 2
1− 3

4

∫ t
0 g(s)ds

1−
∫ t
0 g(s)ds

H(t) + [
1− 3

4

∫ t
0 g(s)ds

1−
∫ t
0 g(s)ds

− 1](g ◦ ∇u)(t)

+[r − 2
1− 3

4

∫ t
0 g(s)ds

1−
∫ t
0 g(s)ds

]

∫
Ω
F (u)dx− 2

1− 3
4

∫ t
0 g(s)ds

1−
∫ t
0 g(s)ds

r − 2

2r

αr
1

αr
2

Brαr
2

≥ γH(t) + C0

∫
Ω
F (u)dx, (2.12)
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where

γ = 2
1− 3

4

∫ t
0 g(s)ds

1−
∫ t
0 g(s)ds

> 0,

C0 = r − 2
1− 3

4

∫ t
0 g(s)ds

1−
∫ t
0 g(s)ds

− (r − 2)
αr
1

αr
2

1− 3
4

∫ t
0 g(s)ds

1−
∫ t
0 g(s)ds

= r − [2 + (r − 2)
αr
1

αr
2

]
1− 3

4

∫ t
0 g(s)ds

1−
∫ t
0 g(s)ds

> 0,

because of r > 2, α2 > α1.
Next we use Hölder inequality to estimate L

r
2 (t):

L
r
2 (t) ≤ C∥u∥rr ≤ Cr

∫
Ω
F (u)dx, (2.13)

then from (2.12), (2.13) and Lemma 2.3, we arrive at

L′(t) ≥ βL
r
2 (t), β =

C0

Cr
. (2.14)

A direct integration of (2.14) from 0 to t yields

L
r
2
−1(t) ≥ 1

L1− r
2 (0)− ( r2 − 1)βt

, (2.15)

Then L(t) blows up at a finite time t∗ ≤ L1− r
2 (0)

( r
2
−1)β , and so does u(x, t). The proof of Theorem

1.1 is complete.
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