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BLOW-UP PHENOMENA OF ARBITRARY POSITIVE
INITIAL ENERGY SOLUTIONS FOR A VISCOELASTIC
WAVE EQUATION WITH NONLINEAR DAMPING
AND SOURCE TERMS

Su-CHEOL Y1

ABSTRACT. In this paper, we considered the Dirichlet initial bound-
ary value problem of a nonlinear viscoelastic wave equation with
nonlinear damping and source terms, and investigated finite time
blow-up phenomena of the solutions to the equation with arbitrary
positive initial data, under suitable conditions.

1. Introduction

Consider the viscoelastic wave equation with nonlinear damping and
source terms

uy — Aug — div(|Vu|*2Vu) — div(| Ve[ =2 Vug) + [ue ™ 2uy
(1.1) =|ulPu, (x,t) € Qx(0,00),
under the homogeneous Dirichlet boundary and initial conditions

(1.2) u(z,t) =0, (x,t) € 902 x[0,00),

(1.3) u(z,0) =up(x), w(x,0)=ui(x), zeq,

where Q C RV (N > 1) is a bounded domain with smooth boundary 99,
and «, 8,p,m > 2 are constants and ug,u; : 2 — R are given initial
data.

The equation (1.1) appears in the models of nonlinear viscoelasticity
such as the system governing the longitudinal motion of a viscoelastic
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configuration obeying a nonlinear Voight model, see [1] and [3]. The in-
teraction between the damping and source terms was firstly investigated
by Levine, considering the semilinear wave equation

(1.4) ug — Au+ alug| ™ 2uy = blulP2u,  (z,t) € Q x (0,00),

where m = 2, and the author showed that the solutions with negative
initial energy blow up in finite time (cf. [4], [5]). Later, Georgiev and
Todorova [2] extended Levine’s results to the nonlinear case, i.e., m > 2,
and they introduced a different method and showed that global solutions
of (1.4) exist if 2 < p < m and the initial energy is negative, and that
the solution blows up in finite time if 2 < m < p and the initial energy
is sufficiently negative. Vitillaro [9] considered an abstract equation,
including linear and quasilinear cases, with nonlinear damping term, and
presented a blow-up result of the solutions with small positive energy.
Messaoudi [6] showed that any solution of (1.4) with negative initial
energy blows up in finite time if m < p, whereas Georgiev and Todorova
[2] showed that the solutions of (1.4) blow up in finite time if the initial
energy is sufficiently negative.

Recently, Yang [10] studied problem (1.1)-(1.3) with p > max{a, m}
and a > 3, and established a blow-up result, when the initial energy
is sufficiently negative. Afterwards, Messaoudi and Houari [7] extended
the result to the case that the initial energy is negative. Besides, on the
blow-up of solutions with arbitrary positive initial energy for other type
wave equations, one can refer to [8] and [11].

In this paper, inspired by [7] and [8], we establish a blow-up result for
the solutions to problem (1.1)-(1.3) with arbitrary positive initial energy.
We first introduce the following function space, energy functional, and
lemma:

Z = L([0,T); Wy ™ () n Wh([0,T); L*(2))
NWLA(0,7); Wy () 0 Whm([0,T); L™(%)),

1, ., 1 1
(1.5) E(t) = glluellz + S 1Vula - I;IIUHQ, t>0,

LEMMA 1.1. Suppose that a, B,p,m > 2, a > 3, and maz{m,a} <
p < ro, where 1, is the Sobolev critical exponent of Wol’a(Q). If there
exists a number ty > 0 such that E(tg) < 0, then the solution v € Z of
problem (1.1)-(1.3) blows up in finite time.

N
REMARK 1.2. We remind that r,, = Nia, if N > «, and rq > «, if

N = a. In addition, r, = 00, if N < a.
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Lemma 1.1 can be easily proved by a similar argument as in [7] with
slight modification, and hence, we omit the proof here.

2. Main result and an example

THEOREM 2.1. Suppose that «, B,p,m > 2, a > 3, and maz{m, a} <
p < rq. Ifu(t) € Z is a solution of problem (1.1)-(1.3) satisfying

(2.1) E0)>0 and/ uourdz > ME(0),
Q

then u(t) blows up in finite time, where
M = 77(50)7

-z 5 9

1

m—1/[( pe \ m1
L (1—9) ’

p(l — Eo)

and g € (0,1) is the root of the equation ——— = n(ey),
7(€0)

7(e) =2\/[1+p(12_5)} {222 [p(la_g) _1} _2(?—59)}’

A1 > 0 is the first eigenvalue of —A, and Cy and Cy are positive con-
stants.

Proof. By contradiction, we assume that u(t) € Z is a global solution
of problem (1.1)-(1.3). Multiplying the both sides of equation (1.1) by
u; and integrating the result over €2, one can see that

d m
(22) G E® = ~Vurll3 = [Vuell = lluell7; < 0.
It follows from Green’s formula that
d

— | uupdz = |ju||3 —i—/ uugde

(2.3) _ ||ut\|§—\|vu||g—/ VP2V, - Vuda
0

- / Vuy - Vudx—/ u| ™ 2upuda + [|ul[D,
Q Q
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by multiplying the both sides of (1.1) by u and integrating the result
over {2.

In order to estimate the right side of (2.3), we use Holder’s inequality
and Young’s inequality and obtain the inequalities

/Vut Vudz| < (/ |Vl cl:c>é (/ IVuze|2d%>é
= 23 1Vl [ 5 A\VutHQ]
(2.4) S )
<5 [ewHIvul] + 5 (2;>§||Vut\|2]
:uHVuH%+41MHWtH%,
(2.5)

™|

</ yvu|ﬁdz> 7

()’
= (AIVulls) (A Vel 7)

1 -1, _ N\
sgunwumh— (A vl )"

'/ Vg |P~2Vu; - Vudz| <

B
*nv 15+ 22N v
Ié; B Ut B2
and
1 m—1
/]ut|m_2utu dz| < (/ \u|mda:> (/ |ut|mdx)
Q Q Q
(2.6) = (Ollullm) (6wl )
) 1 m m—1 —1 m—1 L
<7 - m—
<5 ™+ 5 07 )
5m

EH Hm+75_m T [|lue|m,
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where p, A\, d > 0 are constants which will be specified later. Substituting
inequalities (2.4)-(2.6) into (2.3), one can have the inequality

1
uug dz >3 — [ Vullg — pll Vull3 @IIVWH%

A8 B—1 _ s o™ im
(2.7) = G IVuly = ==Vl = -l

B
m—1__ _m_
= P Nl +

dt Jo

On the other hand, it follows from (1.5) that
p p
July = —pB(0) + Ll + 2w,
and from (2.2) one can see that

LB,

Vw2 > =
IVl > o

d
~ |V > < E(t),

= dt
and
d
— ms _FE(t).
el > £ B (1)

Then inequality (2.7) can be written as

1
uudz > Jluel3 — [Vullg = pllVull3 @HVWH%

M\ B -1 _ 8 B om m
— g IVulls = == A 7 IVaelly = - lulm

B
m—1__ _m_
= 0T el + ellully + (1= €)llullp

dt Jo

[+ 2 g+ [P ] o

M3 Mo
— pl[ Va3 - guwng =l +ellully = p(1 =€) E(),
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where ¢ is a constant small enough, from which we can have the inequal-
ity

d 1 6—1 L o m— 1 _m
T [/Quutdx— <4M+ﬁ/\ B +7m o )E(t)}
8 2 [1+ PO g+ [P gl - vl

A8 g™ »
- ?Hvu”g =l +ellully = (1 =€) E(?).
Using Holder’s inequality, one can see that there exists a constant
C7 > 0 such that

_B o
(2.9) IVulld < Q= [ Vull2 < C1||Vullg.

In fact, we have |[Vulls < ||[Vu|2, if |[Vulls > 1, and there exists a
constant C' > 0 such that |[Vulls < C||Vu|2, if 0 < || Vullq < 1. The

[e'R]

inequality (2.9) clearly holds, if |Vul||, = 0. Similarly, it can be seen
that there exists a constant Cy > 0 such that

IVull3 < Caf | Vull3-

Then, from (2.8), we have the inequality

4 [/ uugdr — (1 + E)\_% + m_lé_mml> E(t)]
Q

dt 4 B m
1-— 1— pLe;
210) > 14 22 g [HLZD - XA o

m

6 m
=l + ellully = p(1 — ) E().

Meanwhile, from the convexity of the function “—yy in y for w > 0 and

y > 0, we have the inequality

1

0 1-4
(2.11) —lullm < S llall3 +

[y,
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where 0 = I% It then follows from inequalities (2.10) and (2.11)

p—
that

d 1 B—1___8_ m—1___m_
— R e L s w1\ B
gr [/Q uupde <4M + 3 A BT p- ) 1) (t)]

(2.12) > {1 L ra _5)] e |2 + {p(la_ &) , XG —ucg] V@

2 a
-]

0o

- THUH% +

Setting § = (fp@)”li, A= {%[@ — 1]}é, and p = ﬁ p(lojs) — 1}

in (2.12), and using Poincaré’s inequality, inequality (2.12) becomes

(2.13)
d

= [ /Q wupdzs — n(s)E(t)]

[P [0 - 2
—p(l—e)E(t),

where A1 > 0 is the first eigenvalue of —A.
Let ¢ be a constant small enough such that 0 < e < 1 and

Qi[mi;dl}zf%m

> 0.

We then have the inequality

[RRIEE] IWTRETH LICC R R o

p(l—¢), [ A p(1—¢) pbe
(2.14)22\/[1+ 5 ]{2612[ - —1]—2(1_9)}/Quutda:,

by Cauchy’s inequality, and it follows from (2.13) and (2.14) that
d
4 [ / wiy d — n(s)E(t)] () / wiy Az — p(1 — &) E(L)
dt Q Q

(2.15) e [ /Q wy dar — pg (;)6)19(75)] .

v
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It can be easily seen that

s )
. %(1 %)(*—1)
¢ \/2 2 (G-

’Y(E) \/25'\21(14»2)(0471)

, n(e) = o0, ase — 0T,

and

e [ e e )

as € — 17. Hence, there exists a constant €, € (0,1) such that

v(e+) = 0and y(e) > 0 for all € € (0,¢,),

which implies that

(2.17)
00 Bod oo
e L
F () T
as e — e;.

(1-¢)

By virtue of (2.16), (2.17), and the continuity of pT ine e
v(e
(0,e4), there exists a constant ey € (0,e4) C (0,1) such that

p(1 — o)
7v(€0)

From (2.15), one can obtain the inequality

= n(co)-

(2.18) % [ /Q wug dz — n(so)E(t)] > 4(eo) [ /Q wug dar — 1(e0) (1) ] -
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We now define a function H : [0,00) — R as

H(t) = /Quut da —n(eo) E(t).

Then, from condition (2.1) and (2.18), we have

H(0) = /Qu()ul dz — n(e9)E(0) > 0,

and

d
(2.19) aH(t) > v(e0)H(t),
and inequality (2.19) implies that
H(t) > "t H(0) for all t > 0.

Since u(t) is a global solution, one can see that 0 < E(t) < E(0) for all ¢ >
0 by Lemma 1.1 and (2.2), and hence, we have the inequalities

/ wug dz > H(t) > V) H(0).
Q

Therefore, we obtain the estimates
¢
@2 = [u©)3+2 / / wiy dwdr
0o JQ
¢

(03 + 2 / SN (0) dr
0

v

2
7v(€0)

On the other hand, by Hélder’s inequality and (2.2), we have

(2.20) = Ju(O)]3 + (7 —1)H(0).

t
lu@lz < a2+ / sz dr
t
< Ju(O)2+ Co / letr o
0
. 1
< (02 + Cot ™ < [ el dr)
0
< u(0)||2 + Cot ™= [E(0) — E(t)]=

m—1 1

(2.21) < u(O)ll2 + Cot = B,

where Cj is a positive constant, which contradicts with (2.20). The
proof is completed. O
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EXAMPLE 2.2. As an application of Theorem 2.1, we consider the
following example in one-dimensional space:

Let © = [0,27] C R and assume that 8 < o =4 and m < p=5. The
initial data ug and u; are given by

u(z,0) = asin(bx) and w(x,0) = a?b? sin(bzx),

where a and b are positive integers.
Then one can see that

B(0) =4 lu0)]3 + I u(O)} ¢ u(0)

1 2w 1 2m
:/ |a?b? sin(bx)|? dx + / |ab cos(bz)|* dx
(2.22) 2 ;’ . 4o
- 5/ lasin(bz)|® dz
0
2
:§a4b47r — %cﬁ,
and

/ u(0)us(0) dz = a3b’r.
Q

It can be easily seen that for any given constant ¢ > 0, there exist
constants a,b > 0 such that % > ¢ and

5 44 32 5 adbPr
Sttt — 226° — =0
gV T T s T o T

where M is a constant defined in (2.1), which implies

/ uourdz > ME(0).
Q

By Theorem 2.1, we conclude that the solution of problem (1.1)-(1.3)
blows up in finite time.
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