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BLOW-UP PHENOMENA OF ARBITRARY POSITIVE

INITIAL ENERGY SOLUTIONS FOR A VISCOELASTIC

WAVE EQUATION WITH NONLINEAR DAMPING

AND SOURCE TERMS

Su-Cheol Yi

Abstract. In this paper, we considered the Dirichlet initial bound-
ary value problem of a nonlinear viscoelastic wave equation with
nonlinear damping and source terms, and investigated finite time
blow-up phenomena of the solutions to the equation with arbitrary
positive initial data, under suitable conditions.

1. Introduction

Consider the viscoelastic wave equation with nonlinear damping and
source terms

utt −∆ut − div(|∇u|α−2∇u)− div(|∇ut|β−2∇ut) + |ut|m−2ut

= |u|p−2u, (x, t) ∈ Ω× (0,∞),(1.1)

under the homogeneous Dirichlet boundary and initial conditions

(1.2) u(x, t) = 0, (x, t) ∈ ∂Ω× [0,∞),

(1.3) u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

where Ω ⊂ RN (N ≥ 1) is a bounded domain with smooth boundary ∂Ω,
and α, β, p,m > 2 are constants and u0, u1 : Ω → R are given initial
data.

The equation (1.1) appears in the models of nonlinear viscoelasticity
such as the system governing the longitudinal motion of a viscoelastic
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configuration obeying a nonlinear Voight model, see [1] and [3]. The in-
teraction between the damping and source terms was firstly investigated
by Levine, considering the semilinear wave equation

(1.4) utt −∆u+ a|ut|m−2ut = b|u|p−2u, (x, t) ∈ Ω× (0,∞),

where m = 2, and the author showed that the solutions with negative
initial energy blow up in finite time (cf. [4], [5]). Later, Georgiev and
Todorova [2] extended Levine’s results to the nonlinear case, i.e., m > 2,
and they introduced a different method and showed that global solutions
of (1.4) exist if 2 < p ≤ m and the initial energy is negative, and that
the solution blows up in finite time if 2 < m < p and the initial energy
is sufficiently negative. Vitillaro [9] considered an abstract equation,
including linear and quasilinear cases, with nonlinear damping term, and
presented a blow-up result of the solutions with small positive energy.
Messaoudi [6] showed that any solution of (1.4) with negative initial
energy blows up in finite time if m < p, whereas Georgiev and Todorova
[2] showed that the solutions of (1.4) blow up in finite time if the initial
energy is sufficiently negative.

Recently, Yang [10] studied problem (1.1)-(1.3) with p > max{α,m}
and α > β, and established a blow-up result, when the initial energy
is sufficiently negative. Afterwards, Messaoudi and Houari [7] extended
the result to the case that the initial energy is negative. Besides, on the
blow-up of solutions with arbitrary positive initial energy for other type
wave equations, one can refer to [8] and [11].

In this paper, inspired by [7] and [8], we establish a blow-up result for
the solutions to problem (1.1)-(1.3) with arbitrary positive initial energy.
We first introduce the following function space, energy functional, and
lemma:

Z = L∞([0, T );W 1,α
0 (Ω)) ∩W 1,∞([0, T );L2(Ω))

∩W 1,β([0, T );W 1,β
0 (Ω)) ∩ W 1,m([0, T );Lm(Ω)),

E(t) =
1

2
‖ut‖22 +

1

α
‖∇u‖αα −

1

p
‖u‖pp, t > 0,(1.5)

Lemma 1.1. Suppose that α, β, p,m > 2, α > β, and max{m,α} <
p < rα, where rα is the Sobolev critical exponent of W 1,α

0 (Ω). If there
exists a number t0 ≥ 0 such that E(t0) < 0, then the solution u ∈ Z of
problem (1.1)-(1.3) blows up in finite time.

Remark 1.2. We remind that rα =
Nα

N − α
, if N > α, and rα > α, if

N = α. In addition, rα =∞, if N < α.
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Lemma 1.1 can be easily proved by a similar argument as in [7] with
slight modification, and hence, we omit the proof here.

2. Main result and an example

Theorem 2.1. Suppose that α, β, p,m > 2, α > β, andmax{m,α} <
p < rα. If u(t) ∈ Z is a solution of problem (1.1)-(1.3) satisfying

(2.1) E(0) > 0 and

∫
Ω
u0u1dx > ME(0),

then u(t) blows up in finite time, where

M = η(ε0),

η(ε) = C2

[
p(1− ε)

α
− 1

]−1

+
β − 1

β

{
β

4C1

[
p(1− ε)

α
− 1

]}− 1
β−1

+
m− 1

m

(
pε

1− θ

)− 1
m−1

,

θ =
p−m
p− 2

,

and ε0 ∈ (0, 1) is the root of the equation
p(1− ε0)

γ(ε0)
= η(ε0),

γ(ε) = 2

√[
1 +

p(1− ε)
2

]{
λ1

2C2

[
p(1− ε)

α
− 1

]
− pθε

2(1− θ)

}
,

λ1 > 0 is the first eigenvalue of −∆, and C1 and C2 are positive con-
stants.

Proof. By contradiction, we assume that u(t) ∈ Z is a global solution
of problem (1.1)-(1.3). Multiplying the both sides of equation (1.1) by
ut and integrating the result over Ω, one can see that

(2.2)
d

dt
E(t) = −‖∇ut‖22 − ‖∇ut‖

β
β − ‖ut‖

m
m ≤ 0.

It follows from Green’s formula that
d

dt

∫
Ω
uutdx = ‖ut‖22 +

∫
Ω
uuttdx

= ‖ut‖22 − ‖∇u‖αα −
∫

Ω
|∇ut|β−2∇ut · ∇udx

−
∫

Ω
∇ut · ∇udx−

∫
Ω
|ut|m−2utudx+ ‖u‖pp,

(2.3)
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by multiplying the both sides of (1.1) by u and integrating the result
over Ω.

In order to estimate the right side of (2.3), we use Hölder’s inequality
and Young’s inequality and obtain the inequalities

∣∣∣∣∫
Ω
∇ut · ∇udx

∣∣∣∣≤(∫
Ω
|∇u|2dx

) 1
2
(∫

Ω
|∇ut|

2
dx

) 1
2

=
[
(2µ)

1
2 ‖∇u‖2

] [ 1

(2µ)
1
2

‖∇ut‖2

]

≤1

2

[
(2µ)

1
2 ‖∇u‖2

]2
+

1

2

[
1

(2µ)
1
2

‖∇ut‖2

]2

= µ‖∇u‖22 +
1

4µ
‖∇ut‖22,

(2.4)

∣∣∣∣∫
Ω
|∇ut|β−2∇ut · ∇udx

∣∣∣∣≤(∫
Ω
|∇u|βdx

) 1
β
(∫

Ω
|∇ut|βdx

)β−1
β

= (λ‖∇u‖β)
(
λ−1‖∇ut‖β−1

β

)
≤ 1

β
(λ‖∇u‖β)β +

β − 1

β

(
λ−1‖∇ut‖β−1

β

) β
β−1

=
λβ

β
‖∇u‖ββ +

β − 1

β
λ
− β
β−1 ‖∇ut‖ββ,

(2.5)

and

∣∣∣∣∫
Ω
|ut|m−2utu dx

∣∣∣∣≤(∫
Ω
|u|mdx

) 1
m
(∫

Ω
|ut|mdx

)m−1
m

= (δ‖u‖m)
(
δ−1‖ut‖m−1

m

)
≤ 1

m
(δ‖u‖m)m +

m− 1

m

(
δ−1‖ut‖m−1

m

) m
m−1

=
δm

m
‖u‖mm +

m− 1

m
δ−

m
m−1 ‖ut‖mm,

(2.6)
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where µ, λ, δ > 0 are constants which will be specified later. Substituting
inequalities (2.4)-(2.6) into (2.3), one can have the inequality

d

dt

∫
Ω
uut dx ≥‖ut‖22 − ‖∇u‖αα − µ‖∇u‖22 −

1

4µ
‖∇ut‖22

− λβ

β
‖∇u‖ββ −

β − 1

β
λ
− β
β−1 ‖∇ut‖ββ −

δm

m
‖u‖mm

− m− 1

m
δ−

m
m−1 ‖ut‖mm + ‖u‖pp.

(2.7)

On the other hand, it follows from (1.5) that

‖u‖pp = −pE(t) +
p

2
‖ut‖22 +

p

α
‖∇u‖αα,

and from (2.2) one can see that

−‖∇ut‖22 ≥
d

dt
E(t),

−‖∇ut‖ββ ≥
d

dt
E(t),

and

−‖ut‖mm ≥
d

dt
E(t).

Then inequality (2.7) can be written as

d

dt

∫
Ω
uutdx ≥ ‖ut‖22 − ‖∇u‖αα − µ‖∇u‖22 −

1

4µ
‖∇ut‖22

− λβ

β
‖∇u‖ββ −

β − 1

β
λ
− β
β−1 ‖∇ut‖ββ −

δm

m
‖u‖mm

− m− 1

m
δ−

m
m−1 ‖ut‖mm + ε‖u‖pp + (1− ε)‖u‖pp

≥
(

1

4µ
+
β − 1

β
λ
− β
β−1 +

m− 1

m
δ−

m
m−1

)
d

dt
E(t)

+

[
1 +

p(1− ε)
2

]
‖ut‖22 +

[
p(1− ε)

α
− 1

]
‖∇u‖αα

− µ‖∇u‖22 −
λβ

β
‖∇u‖ββ −

δm

m
‖u‖mm + ε‖u‖pp − p(1− ε)E(t),
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where ε is a constant small enough, from which we can have the inequal-
ity

d

dt

[∫
Ω
uutdx−

(
1

4µ
+
β − 1

β
λ
− β
β−1 +

m− 1

m
δ−

m
m−1

)
E(t)

]
≥
[
1 +

p(1− ε)
2

]
‖ut‖22 +

[
p(1− ε)

α
− 1

]
‖∇u‖αα − µ‖∇u‖22

− λβ

β
‖∇u‖ββ −

δm

m
‖u‖mm + ε‖u‖pp − p(1− ε)E(t).

(2.8)

Using Hölder’s inequality, one can see that there exists a constant
C1 > 0 such that

(2.9) ‖∇u‖ββ ≤ |Ω|
1− β

α ‖∇u‖βα ≤ C1‖∇u‖αα.

In fact, we have ‖∇u‖βα ≤ ‖∇u‖αα, if ‖∇u‖α ≥ 1, and there exists a

constant C > 0 such that ‖∇u‖βα ≤ C‖∇u‖αα, if 0 < ‖∇u‖α < 1. The
inequality (2.9) clearly holds, if ‖∇u‖α = 0. Similarly, it can be seen
that there exists a constant C2 > 0 such that

‖∇u‖22 ≤ C2‖∇u‖αα.

Then, from (2.8), we have the inequality

d

dt

[∫
Ω
uutdx−

(
1

4µ
+
β − 1

β
λ
− β
β−1 +

m− 1

m
δ−

m
m−1

)
E(t)

]
≥
[
1 +

p(1− ε)
2

]
‖ut‖22 +

[
p(1− ε)

α
− 1− λβC1

β
− µC2

]
‖∇u‖αα

− δm

m
‖u‖mm + ε‖u‖pp − p(1− ε)E(t).

(2.10)

Meanwhile, from the convexity of the function uy

y in y for u ≥ 0 and

y > 0, we have the inequality

(2.11)
1

m
‖u‖mm ≤

θ

2
‖u‖22 +

1− θ
p
‖u‖pp,
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where θ =
p−m
p− 2

. It then follows from inequalities (2.10) and (2.11)

that

d

dt

[∫
Ω
uutdx−

(
1

4µ
+
β − 1

β
λ
− β
β−1 +

m− 1

m
δ−

m
m−1

)
E(t)

]
≥
[
1 +

p(1− ε)
2

]
‖ut‖22 +

[
p(1− ε)

α
− 1− λβC1

β
− µC2

]
‖∇u‖αα

− θδm

2
‖u‖22 +

[
ε− (1− θ)δm

p

]
‖u‖pp − p(1− ε)E(t).

(2.12)

Setting δ =
(

εp
1−θ

) 1
m

, λ =
{

β
4C1

[p(1−ε)α − 1]
} 1
β

, and µ = 1
4C2

[
p(1−ε)
α − 1

]
in (2.12), and using Poincaré’s inequality, inequality (2.12) becomes

d

dt

[∫
Ω
uutdx− η(ε)E(t)

]
≥
[
1 +

p(1− ε)
2

]
‖ut‖22 +

{
λ1

2C2

[
p(1− ε)

α
− 1

]
− pθε

2(1− θ)

}
‖u‖22

− p(1− ε)E(t),

(2.13)

where λ1 > 0 is the first eigenvalue of −∆.

Let ε be a constant small enough such that 0 < ε < 1 and

λ1

2C2

[
p(1− ε)

α
− 1

]
− pθε

2(1− θ)
> 0.

We then have the inequality[
1 +

p(1− ε)
2

]
‖ut‖22 +

{
λ1

2C2

[
p(1− ε)

α
− 1

]
− pθε

2(1− θ)

}
‖u‖22

≥ 2

√
[1 +

p(1− ε)
2

]

{
λ1

2C2
[
p(1− ε)

α
− 1]− pθε

2(1− θ)

}∫
Ω
uut dx,(2.14)

by Cauchy’s inequality, and it follows from (2.13) and (2.14) that

d

dt

[∫
Ω
uut dx− η(ε)E(t)

]
≥ γ(ε)

∫
Ω
uut dx− p(1− ε)E(t)

= γ(ε)

[∫
Ω
uut dx− p(1− ε)

γ(ε)
E(t)

]
.(2.15)
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It can be easily seen that[
1 +

p(1− ε)
2

]{
λ1

2C2

[
p(1− ε)

α
− 1

]
− pθε

2(1− θ)

}
→ λ1

2C2

(
1 +

p

2

)( p
α
− 1
)
,

γ(ε)→
√

2λ1

C2

(
1 +

p

2

)( p
α
− 1
)
,

p(1− ε)
γ(ε)

→ p√
2λ1
C2

(1 + p
2)( pα − 1)

, η(ε)→∞, as ε→ 0+,

(2.16)

and[
1 +

p(1− ε)
2

]{
λ1

2C2

[
p(1− ε)

α
− 1

]
− pθε

2(1− θ)

}
→ −

[
λ1

2C2
+

pθ

2(1− θ)

]
,

as ε→ 1−. Hence, there exists a constant ε∗ ∈ (0, 1) such that

γ(ε∗) = 0 and γ(ε) > 0 for all ε ∈ (0, ε∗),

which implies that

γ(ε)→0,
p(1− ε)
γ(ε)

→∞,

η(ε)→C2

[
p(1− ε∗)

α
− 1

]−1

+
β − 1

β

{
β

4C1
[
p(1− ε∗)

α
− 1]

}− 1
β−1

+
m− 1

m

(
pε∗

1− θ

)− 1
m−1

,

(2.17)

as ε→ ε−∗ .

By virtue of (2.16), (2.17), and the continuity of
p(1− ε)
γ(ε)

in ε ∈

(0, ε∗), there exists a constant ε0 ∈ (0, ε∗) ⊂ (0, 1) such that

p(1− ε0)

γ(ε0)
= η(ε0).

From (2.15), one can obtain the inequality

(2.18)
d

dt

[∫
Ω
uut dx− η(ε0)E(t)

]
≥ γ(ε0)

[∫
Ω
uut dx− η(ε0)E(t)

]
.
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We now define a function H : [0,∞)→ R as

H(t) =

∫
Ω
uut dx− η(ε0)E(t).

Then, from condition (2.1) and (2.18), we have

H(0) =

∫
Ω
u0u1 dx− η(ε0)E(0) > 0,

and

(2.19)
d

dt
H(t) ≥ γ(ε0)H(t),

and inequality (2.19) implies that

H(t) ≥ eγ(ε0)tH(0) for all t ≥ 0.

Since u(t) is a global solution, one can see that 0 ≤ E(t) ≤ E(0) for all t ≥
0 by Lemma 1.1 and (2.2), and hence, we have the inequalities∫

Ω
uut dx ≥ H(t) ≥ eγ(ε0)tH(0).

Therefore, we obtain the estimates

‖u(t)‖22 = ‖u(0)‖22 + 2

∫ t

0

∫
Ω
uuτ dxdτ

≥ ‖u(0)‖22 + 2

∫ t

0
eγ(ε0)tH(0) dτ

= ‖u(0)‖22 +
2

γ(ε0)
(eγ(ε0)t − 1)H(0).(2.20)

On the other hand, by Hölder’s inequality and (2.2), we have

‖u(t)‖2 ≤ ‖u(0)‖2 +

∫ t

0
‖uτ‖2 dτ

≤ ‖u(0)‖2 + C0

∫ t

0
‖uτ‖m dτ

≤ ‖u(0)‖2 + C0t
m−1
m

(∫ t

0
‖uτ‖mm dτ

) 1
m

≤ ‖u(0)‖2 + C0t
m−1
m [E(0)− E(t)]

1
m

≤ ‖u(0)‖2 + C0t
m−1
m E(0)

1
m ,(2.21)

where C0 is a positive constant, which contradicts with (2.20). The
proof is completed.
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Example 2.2. As an application of Theorem 2.1, we consider the
following example in one-dimensional space:

Let Ω = [0, 2π] ⊂ R and assume that β < α = 4 and m < p = 5. The
initial data u0 and u1 are given by

u(x, 0) = a sin(bx) and ut(x, 0) = a2b2 sin(bx),

where a and b are positive integers.

Then one can see that

E(0) =
1

2
‖ut(0)‖22 +

1

4
‖∇u(0)‖44 −

1

5
‖u(0)‖55

=
1

2

∫ 2π

0
|a2b2 sin(bx)|2 dx+

1

4

∫ 2π

0
|ab cos(bx)|4 dx

− 1

5

∫ 2π

0
|a sin(bx)|5 dx

=
5

8
a4b4π − 32

75
a5,

(2.22)

and ∫
Ω
u(0)ut(0) dx = a3b2π.

It can be easily seen that for any given constant c > 0, there exist

constants a, b > 0 such that a3b2π
M > c and

5

8
a4b4π − 32

75
a5 − a3b2π

2M
= 0,

where M is a constant defined in (2.1), which implies∫
Ω
u0u1dx > ME(0).

By Theorem 2.1, we conclude that the solution of problem (1.1)-(1.3)
blows up in finite time.
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