• Title/Summary/Keyword: positional accuracy

Search Result 245, Processing Time 0.027 seconds

High Quality Ortho-image Production Using the High Resolution DMCII Aerial Image (고해상도 DMCII 항공영상을 이용한 고품질 정사영상 제작)

  • Kim, Jong Nam;Um, Dae Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.1
    • /
    • pp.11-21
    • /
    • 2015
  • An Ortho-image is the production of removed geometrical displacement, which is generated the aerial image distortion and the relief displacement, etc., using the DSM (Digital Surface Model). Accordingly, the resolution of raw image and the accuracy of DSM will has significant impacts on the ortho-image accuracy. Since the latest DMCII250 aerial camera delivers the high resolution images with five centimeters Ground Sampling Distance(GSD), it expects to generate the high density point clouds and the high quality ortho-images. Therefore, this research has planned for reviewing the potentiality and accuracy of high quality ortho-image production. Following to proceed the research, DSM has been produced through the high density point cloud extracted from DMCII250 aerial image to supply of high density DSM by creation of ortho-image. The research results has been identified that images with the DSM brought out higher degrees in positional accuracy and quality of ortho-image, compared with the ortho-image, produced from the existing digital terrain map or DSM data.

Accuracy of a direct drill-guiding system with minimal tolerance of surgical instruments used for implant surgery: a prospective clinical study

  • Lee, Du-Hyeong;An, Seo-Young;Hong, Min-Ho;Jeon, Kyoung-Bae;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.3
    • /
    • pp.207-213
    • /
    • 2016
  • PURPOSE. A recently introduced direct drill-guiding implant surgery system features minimal tolerance of surgical instruments in the metal sleeve by using shank-modified drills and a sleeve-incorporated stereolithographic guide template. The purpose of this study was to evaluate the accuracy of this new guided surgery system in partially edentulous patients using geometric analyses. MATERIALS AND METHODS. For the study, 21 implants were placed in 11 consecutive patients using the direct drill-guiding implant surgery system. The stereolithographic surgical guide was fabricated using cone-beam computed tomography, digital scanning, computer-aided design and computer-assisted manufacturing, and additive manufacturing processes. After surgery, the positional and angular deviations between planned and placed implants were measured at the abutment level using implant-planning software. The Kruskal-Wallis test and Mann-Whitney U test were used to compare the deviations (${\alpha}=.05$). RESULTS. The mean horizontal deviations were 0.593 mm (SD 0.238) mesiodistally and 0.691 mm (SD 0.344) buccolingually. The mean vertical deviation was 0.925 mm (SD 0.376) occlusogingivally. The vertical deviation was significantly larger than the horizontal deviation (P=.018). The mean angular deviation was 2.024 degrees (SD 0.942) mesiodistally and 2.390 degrees (SD 1.142) buccolingually. CONCLUSION. The direct drill-guiding implant surgery system demonstrates high accuracy in placing implants. Use of the drill shank as the guiding component is an effective way for reducing tolerance.

Extraction of Building Boundary on Aerial Image Using Segmentation and Overlaying Algorithm (분할과 중첩 기법을 이용한 항공 사진 상의 빌딩 경계 추출)

  • Kim, Yong-Min;Chang, An-Jin;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.49-58
    • /
    • 2012
  • Buildings become complex and diverse with time. It is difficult to extract individual buildings using only an optical image, because they have similar spectral characteristics to objects such as vegetation and roads. In this study, we propose a method to extract building area and boundary through integrating airborne Light Detection and Ranging(LiDAR) data and aerial images. Firstly, a binary edge map was generated using Edison edge detector after applying Adaptive dynamic range linear stretching radiometric enhancement algorithm to the aerial image. Secondly, building objects on airborne LiDAR data were extracted from normalized Digital Surface Model and aerial image. Then, a temporary building areas were extracted by overlaying the binary edge map and building objects extracted from LiDAR data. Finally, some building boundaries were additionally refined considering positional accuracy between LiDAR data and aerial image. The proposed method was applied to two experimental sites for validation. Through error matrix, F-measure, Jaccard coefficient, Yule coefficient, and Overall accuracy were calculated, and the values had a higher accuracy than 0.85.

The Fundamental Study of Height Determination Using GPS Leveling Technique (GLT에 의한 정밀 표고결정의 기초적 연구)

  • 강인준;장용구;곽영주
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.2
    • /
    • pp.155-161
    • /
    • 2001
  • When determining a three dimensional position for engineering purposes, we can use the GPS survey to find position. According to the enhancement of precision for domestic Geoid model, the positional accuracy of GPS about precise method of vertical position has been also increased. But by considering Geoid undulation, it is difficult to measure GPS-derived elevations. Because Geoid undulation has changed little in local sites, GPS-derived elevations are similar to orthometric height. By ignoring Geoid undulation, it is possible to measure GLT-derived elevations at the local. small construction sites. GLT(GPS Leveling Technique) provides a method for computing orthometric heights. GLT processes the data more rapidly than conventional measurement devices. We only considered the weight factors affecting accuracy between the points. That is, the GPS procedures to produce satisfactory elevation accuracy depends on the method of observations, receivers and conditions of the local environment. A comparison was performed between the GPS survey using Geoid model and GLT at a part within Pusan National University and construction model sites in South Korea. And the writers proved the GPS surveying is efficient in positioning accuracy, time, and cost on a construction sites.

  • PDF

A Study on the Analysis of Positional Accuracy between the GPR Survey Data and Underground Space Integration Map (현장 GPR 탐사자료와 지하공간통합지도 상호위치 정확도 분석에 관한 연구)

  • SONG, Seok-Jin;CHO, Hae-Yong;HAN, Dam-Hye;KIM, Sung-Gil
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.208-216
    • /
    • 2020
  • Recently, issues regarding underground safety such as sink hole, ground subsidence and damage to old underground facilities have been increasing in urban areas, raising the need for more accurate management of underground facilities. Thus, this study derived a technique for comparing spatial data of underground facilities acquired from GPR exploration results acquired at the site with spatial data of integrated underground spatial maps. Using this underground space integrated map-linked service prototype program developed through this study, comparing the location information of the GPR exploration results and the underground space integrated map for the verification of site usability in some sections around Gangnam Station, the results demonstrated that the location of the map is 0.879m maximum, minimum of 0.101m and the average fudge factor was 0.625m. If accuracy of the GPR exploration results is guaranteed, it is judged that it can be used to improve the location accuracy of the underground space integration map.

Identification of English Labial Consonants by Korean EFL Learners (한국 EFL 학생들의 영어 순자음 인지)

  • Cho, Mi-Hui
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.12
    • /
    • pp.186-191
    • /
    • 2006
  • The perception of English labial consonants was investigated via experiment where 40 Korean EFL learners identified nonwords with the target labial consonants [p, b, f, v] in 4 different prosodic locations: initial onset position, intervocalic position before stress, intervocalic position after stress, and final coda position. The overall result showed that the proportion of perception accuracy of the target consonants was rather low, amounting to only 55%. There was also a positional effect since the accuracy rates for perceiving the four target consonants differed by position. Specifically, the average accuracy rate of the target consonant identification was higher in intervocalic position before stress (70%) and initial onset position (67%) than in intervocalic position after stress (45%) and final coda position (36%). Further, the accuracy rate for [f] is was high in all prosodic locations except intervocalic position after stress. The perception patterns were accounted for by the markedness and perceptual factors in conjunction with stress location.

  • PDF

Effects of a modified surgical protocol on the positional accuracy of dental implants placed using fully guided implant surgery in the partially edentulous posterior ridge with distal extension: a dentiform model study

  • Young Woo Song;Seung Ha Yoo;Ui-Won Jung
    • The Journal of Advanced Prosthodontics
    • /
    • v.16 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • PURPOSE. The present experiment aimed to evaluate the placement accuracy of fully guided implant surgery using a mucosa-supported surgical guide when the protocol of osteotomy and installation was modified (MP) compared to when the protocol was sequentially and conventionally carried out (CP). MATERIALS AND METHODS. For 24 mandibular dentiform models, 12 dentists (6 experts and 6 beginners) performed fully guided implant placements two times at the right first and second molar sites using a mucosa-supported surgical guide, once by the CP (CP group) and at the other time by the MP (MP group). The presurgical and postsurgical stereolithographic images were superimposed, and the deviations between the virtually planned and actually placed implant positions and the procedure time were compared statistically (P < .05). RESULTS. The accuracies were similar in the CP and MP groups. In the CP group, the mean platform and apex deviations at the second molar site for the beginners were +0.75 mm and +1.14 mm, respectively, which were significantly larger than those for the experts (P < .05). In the MP group, only the mean vertical deviation at the second molar site for the beginners (+0.53 mm) was significantly larger than that for the experts (P < .05). The procedure time was significantly longer for the MP group (+94.0 sec) than for the CP group (P < .05). CONCLUSION. In fully guided implant surgery using a mucosa-supported guide, the MP may improve the placement accuracy when compared to the CP, especially at sites farther from the most-posterior natural tooth.

The Development of Mobile Positioning System Using CCD Cameras and GPS (CCD 사진기와 GPS를 이용한 이동용 위치결정체계 개발)

  • 유복모;최송욱;김기홍
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.1
    • /
    • pp.41-50
    • /
    • 1998
  • The object positional data in the form of digital imagery is processed and stored and is updated easily. The GPS, positioning system using satellites, is acquired its utilities in many parts because it is very easy to get the three dimensional coordinates using GPS around the world. For the effective acquisition of positional data to-ward objects in space, the automation of digital photogrammetry must be done and data acquisition and processing should be performed in real-time. In this study, the program is developed for automatic process of digital photogrammetry and the VAN that has CCD cameras and GPS receivers onboard is built for mobile positioning system. Also, the three dimensional positioning toward 20 objects which are vertical to the ground is done using left and right imagery of CCD cameras and GPS. For a base research in real-time photogrammetry, the three dimensional positioning is performed using continuous imagery and GPS and the three dimensional positioning accuracy is analyzed.

  • PDF

Safety evaluation of the domestic Offset procedure using the unidirectional dual airway collision risk model (단방향 복선 항공로 안전평가모델을 활용한 국내 Offset 절차 안전도 분석)

  • Se-eun Park;Hui-yang Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.356-364
    • /
    • 2023
  • Sophisticated Air Navigation System has contributed to enhancing the capacity of airspace capacity, leading to an efficient airspace environment. However, it has acted as a factor increasing the probability of collision. When an aircraft fails to maintain vertical separation and instead exhibits lateral positional errors, it does not necessarily lead to a collision. However, as the lateral positional accuracy increases, the randomness of aircraft positions decrease, resulting in an elevated probability of collisions. Consequently, The International Civil Aviation Organization has introduced Strategic Lateral Offset Procedures(SLOP), intentionally deviating aircraft from the centerline of airways. Likewise, South Korea also operates Offset procedure. The Y579 was operated using the Offset before its conversion to a dual airway and the analysis of the Offset track revealed that it was being operated similarly to a unidirectional dual airway. This paper develops a safety assessment methodology applicable to unidirectional dual airways, and applies it to perform a safety assessment of the Y579 Offset procedure.

Line feature extraction in a noisy image

  • Lee, Joon-Woong;Oh, Hak-Seo;Kweon, In-So
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.137-140
    • /
    • 1996
  • Finding line segments in an intensity image has been one of the most fundamental issues in computer vision. In complex scenes, it is hard to detect the locations of point features. Line features are more robust in providing greater positional accuracy. In this paper we present a robust "line features extraction" algorithm which extracts line feature in a single pass without using any assumptions and constraints. Our algorithm consists of five steps: (1) edge scanning, (2) edge normalization, (3) line-blob extraction, (4) line-feature computation, and (5) line linking. By using edge scanning, the computational complexity due to too many edge pixels is drastically reduced. Edge normalization improves the local quantization error induced from the gradient space partitioning and minimizes perturbations on edge orientation. We also analyze the effects of edge processing, and the least squares-based method and the principal axis-based method on the computation of line orientation. We show its efficiency with some real images.al images.

  • PDF