Proceedings of the 11"
KACC, October 1996

Line Feature Extraction in a Noisy Image

® Joon-Woong Lee * , Hak-Seo Oh **, In-So Kweon ***

* KIA Technical Center, Kia Motors
781-1, Soha-Dong, Kwang Myung-Shi, Kyunki-Do, Korea.

Tel:+82-2-801-2049; Fax:+82-2-801-2400

** Production Engineering Center, Samsung Electronics

416, Maetan-3Dong, Suwon City, Kyungki-Do, Korea.

Tel:+82-331-200-2432; Fax:+82-331-200-2454
*** Department of Automation and Design Eng., Korea Advanced Institute of Science and Technology
207-43, Cheongryangridong, Dongdaemoongu, Seoul, Korea.

Tel:+82-2-958-3455; Fax:+82-2-968-1638

one of the most fundamental issues in computer vision. In complex
scenes, it is hard to detect the locations of point features. Line
features are more robust in providing greater positional accuracy.
In this paper we present a robust “line features extraction™
algorithm which extracts line feature in a single pass without using
any assumptions and constraints. OQur algorithm consists of five
steps: (1) edge scanning, (2) edge normalization, (3) line-blob
extraction, (4) line-feature computation, and (5) line linking. By
using edge scanning, the computational complexity due to too
many edge pixels is drastically reduced. Edge normalization
improves the local quantization error induced from the gradient
space partitioning and minimizes perturbations on edge
orientation. We also analyze the effects of edge processing, and
the least squares-based method and the principal axis-based
method on the computation of line orientation. We show its
efficiency with some real images.

Keywords: line extraction, edge extraction, edge scanning, edge
normalization, line-blob extraction, line linking

1. Introduction

Finding line segments in an intensity image has been one of the most
fundamental issues in the area of computer vision. Although much work
has been done since the 1960s, the robust line segment extraction has
remained as a difficult and open problem in many areas of computer
vision. There are several methods to extract line segments such as the
Hough transform{2, 7.8], polygonal approximation[3,9,10,14], arm
method{3], chain coding[11] and ¢-s curve[3]. The well-known Hough
technique is probably the most popular method. This method, however,
has some limitations such as low peaks for short lines in Hough space and
limited accuracy in line parameter estimation caused by the quantization
of Hough space. Other methods also have several problems such as the
dependence on iteration, the inability to an unconstrained complex scene,
heuristic parameterization, poor localization accuracy and long processing
time. Bimbo et al.[2] divided the image into multiple tiles and extracted
line segments for each tile using the Hough transform. They used a neural
network to obtain road boundary line using the extracted line segments.
This method is task-oriented and depends on prior knowledge. Burns et
al.[4] proposed a line extraction algorithm based on a gradient-based and
region-based approach. They effectively quantized the gradient orientation
of edge pixel. Kahn ez a/.[1] used a similar approach to Burns et a/.[4] and
improved the speed. Yuan and Suen{l1] proposed an algorithm to
determine the straightness of a digital arc by chain coding in O(n) time.
Pikaz and Dinstein[10] improved the general polygonal approximation
and Chung er al/.{9] discussed a polygonal approximation using a
competitive Hopfield neural network. Breuel{8] introduced a variety of

137

statistical error models to extract the maxima of the probabilistic Hough
transform and the generalized Hough transform. Guil er al.[7] optimized
the general Hough transform algorithm by reducing the complexity and
memory requirements.

In this paper. we present a line extraction algorithm to solve the
problems of previous approaches. The first step in the line segment
extraction is extracting edge pixels. We compute the magnitude and the
direction of the gradient for each pixel using the Deriche operator[6], and
remove the edge pixels with low gradient norm by non-maximum
suppression[3] and hysteresis thresholding[5]. According to the gradient
space partitioning scheme proposed by Bums er al.[4], we coarsely
quantize the gradient direction and assign a gradient direction code to
each edge pixel. The gradient space partitioning, however, has the
intrinsic ambiguity problem in its codes due to a quantization error in the
boundary of the two partitioned sections. In addition to this ambiguity, a
salient intensity variation or noise effect along the edge profile provides
perturbations on the edge orientation. An edge normalization method
overcomes the ambiguity and the random orientation along the edge
profile by using the maximum-likelihood decision criterion[12]. Edge
scanning, which provides the connected edge chains, is used to increase
the computational efficiency, linking broken edges while removing short
edges. The connected edge pixels with an identical gradient direction code
are then grouped into a line-blob using the blob-coloring technique[3].
Finally, we compute the line features for each line-blob.

Our proposed algorithm has several benefits: For any unconstrained
outdoor complex scene our algorithm extracts line features in a single
pass, without any assumptions and constraints, with the minimum use of
heuristic parameters.

We show the efficiency of the algorithm with some real images.

2. Extracting line segments

The proposed line segments extraction algorithm is organized as
shown in Fig. 1.

2.1 Edge processing

In edge processing, we obtain the magnitude and the direction of the
gradient for each pixel using the Deriche operator[6] and remove the edge
pixels with low gradient norms by the non-local maximum suppression[3]
and the hysteresis thresholding[5]. These two processes deliver the effect
of edge thinning and reduce the computational complexity. Using the
gradient space partitioning, we assign a gradient direction code to each
edge pixel. The range of gradient direction is quantized into eight sections
depending on the angle as shown in Fig. 2.

I Edge extraction E

LG radient space partitioning i
v o~

I Edge scanning l
A 4

r Edge normalization E

I Line-blob extraction t
¥

[Computing line features

All edges
alc scan =
XY

I Line linking E
Fig. 1. Overall procedure of a line segment extraction

ns 6

1578 ns

20258 - 3375

2435 — =S

Fig. 2. Four-directional gradient space partitioning

2.2 Line-blob extraction and computation of line features
A. Edge scanning

Prior to the computation of line features, we have to solve several
problems such as the processing of a large amount of data due to
excessive edges, linking broken edges, removing short edges and reducing
the quantization error of the gradient space partitioning. To solve these
problems we use the edge scanning which produces connected edge
chains. We also use the contextual relationship of scanned edge pixels in
the edge normalization process. The eight-directional chain coding[3] is
used to scan the edges.

B. Edge normalization

Edge nomalization enhances edge orientation by reducing the
random phenomena of edge locality that may be introduced in the edge
gradient partitioning process. Here, the examples of locality are shown in
Fig. 3, marked as A and B. This random gradient direction code occurs
due to a quantization error around the boundary of a partitioned gradient
space or due to a salient intensity variation and noise effect. To solve this
problem, edge normalization is carried out. For successive two-edge
pixels, p, and p,,, on the scanned edge, we check whether ¢, is
different from ¢,,, which are the gradient direction codes of
D, and p,,,, respectively. If ¢, is not equal to d,,,, n pixels before
p, and after
P(zlm) and P(z|m,) defined by:

K+n+t
N . _

Plzim)=zmn ¢ Tdi=de T=koniekensd (1)
2n+2 0 otherwise

Dy, are used to compute a probability density function of

kenel
3 f

/ i = f = e
Plzlm,) =22 /={1 1O G SR Lk 2)
n

+1° 7 |0 otherwise
where m, = {gradient code of p,,, = d, } and
m, = {gradient code of p,,, = d,,,}
represent message spaces for the decision rule.

If the likelihood ratio A{z)is defined as

Plzim)
AlZ)= —/——"= (3
Plzlm,)
then we decide the decision rule associated with message spaces
m 1
A(z)2 1
i @)

If message /m,is decided, the gradient direction code ¢, ., changes to
d, . Fig. 3 shows an example of edge normalization.

1
]
B . i l Z)B

I
1
1
4
~/"

q7.

r;¥sd‘nnm¢ndge

. : |
T 7 1 \ T

R_—

(a) Before normalization (b) Aftér normalization
Fig. 3. Edge normalization

The gradient direction codes of pixels indicated by A and B in Fig. 3(a)
are converted to the ones indicated by A’ and B’ in Fig. 3(b)

C. Line-blob extraction and computation of line features

The connected edge pixels with an identical gradient direction code
are grouped into a line-blob using the blob-coloring technique[3]. The
algorithm used in this paper handles quintuple images which are four
quantized gradient direction codes and a background. For each extracted
line-blob, we compute line features such as mid-point, intercept of y-axis,
orientation, end points and length.

2.3 Line linking

For a cluttered scene, the current approaches to line extraction
generally produce broken segments even for a single scene line. In order
to link broken line segments we construct three definitions:
Definition 1: co-linearity

For any two lines [, and £, as shown in Fig. 4, the two lines are
collinear if

max(/,./,) <7 (5)
where / and /, are lengths from the mid-point A, of L to {, and
from the mid-point P, of [, to [, respectively.
Definition 2: overlappedness
In Fig. 4, line L;, which is orthogonal to line [, passes through A,
and intersects the line [, at P;. If P; belongs to the MBR which
stands for a minimum building rectangle encompassing [, , two lines
4, and L, are assumed to be overlapped.

Definition 3: adjacency
If the minimum distance between end points of two lines is smaller than a

preset threshold 7, , these two lines are adjacent. In Fig. 4, if /; <1, ,
two lines £, and L, are adjacent.

P, (x5

A (xy) : mid point of L, /ﬁ
MBR of L,

A, (x.y) : mid point of L,

Fig. 4. Line linking

If any two lines are collinear, not overlapped, and adjacent, we
merge them to make a single line.

138

Fig. 5. Analysis of effects of edge processing and line orientation generation methods using a real image: (a)Original image, (b)Edges from hysteresis
thresholding, (c)Extended edges of rectangle indicated by B in (b) and line fitting results, (d)Thinned edges from edges of (b), (¢)Edges from non-local
maximum suppression and hysteresis thresholding and (f)Extracted line segments using edges of (e).

3. Analysis of the effects of edge processing and line
orientation computation methods

In this section, we analyze the effects of edge processing and line
orientation computation methods such as the least-squares-based method
and principal axis-based method to the line orientation. To do this, we use
a real image as shown in Fig. 5. In most cases, edge thresholding leads to
large localization errors and many multiple detections of a single edge as
shown in Fig. 5(b). Non-local maximum suppression and hysteresis
thresholding can efficiently implement an edge thinning as shown in Fig.
5(e). However, edge thinning followed by the simple thresholding often
produces segmentation defects such as broken smaller chains and
inaccurate edge localization as shown in Fig. 5(d). Edges obtained by non-
local maximum suppression and hysteresis thresholding do not show such
effects as shown in Fig. 5(e).

In Fig. 5(c), which shows the extended edge image encompassed by
the rectangle indicated by B in Fig. 5(b), we note that pixels in the region
marked by A and A’ have great intensity changes. Therefore, more edge
pixels are left and dominate the line orientation. In Fig. 5(c), for example,
lines @ and @ are obtained by the principal axis of all pixels in the line-
blob. Lines @ and @ are the least-squares estimate obtained by using the
pixels within the line-blob. Lines © and @ show better localization
accuracy than lines @ and @. We note that the least-squares-based method
is more sensitive to the region indicated by A and A’ than the principal
axis-based method. Lines @ and @. however, do not satisfy the
localization well. In Fig.5(f), lines ® and ® are also obtained by the
principal axis-based method. These lines show better localization than
lines @ and ®@. In conclusion, the principal axis to an edge from the non-
local maximum suppression and hysteresis thresholding gives good results
of localization for a line extraction.

4. Experimental results

The proposed algorithm for extracting line segments has been
examined on a large number of real images which are composed of a
laboratory image and two types of road images. At first, we took an
example of our laboratory image as shown in Fig. 6(a).

(a) Road image
Fig. 7. Road image, its and line segments for a car following system

139

Fig. 6(b) shows the extracted line segments composed of four-
hundred-seventy-one segments. Before line linking, five-hundred twenty
line segments were extracted. Fig. 7 and Fig. 8 show the line segments for
outdoor road scenes.

o BN N
T ey

e Issﬁ--"

— 2 [E
L I R
NS, el e et -
A$\r~= »' aF s
—

At :
=
I ~'

! ~

(a) Road image (b) Extracted line segments
Fig. 8. Road image, its line segments for a lane tracking system

The following example is an image of a yacht as shown in Fig. 9(a).
Fig. 9(b) shows a line map derived from a rotational invariant edge feature
extraction and the resulting log-likelihood ratio provided by courtesy of F.
Heijden[13]. His method emphasized local multiple step edges. Fig. 9(c)
shows the extracted line segments according to the proposed algorithm in
this paper. Since these two methods use different approach to extract edge
elements, it is very difficult to compare directly. The careful inspection
reveals that the proposed algorithm produces line segments well in the
regions where intensity discontinuities occurs strongly.

(a) Yacht image
4

N
7

(b) Line segments by[13]
Fig . 9. Original image, its extracted edges and line segments

5. Conclusion

In this paper, we proposed a robust line segment extraction algorithm.
Our algorithm extracts line features in a single pass, without any
assumptions and constraints, with the minimum use of heuristic
parameters. The algorithm has been implemented on an IBM PC or its
compatible with a C30-based image processing board. By using edge
scanning, blob-coloring and proper data structuring, the computational
efficiency was highly improved. We minimized the local quantization
errors induced from the gradient space partitioning and the occurrence of a
random orientation involved in the detected edge profile due to a salient
intensity variation or noise by edge normalization. We also analyzed the
effects of edge processing and line orientation computation methods on
line orientation. Experimental results with some real scenes showed that
the proposed algorithm works well in any environment. We expect our
work will contribute to many areas of computer vision.

REFERENCES

[1] P. Kahn, L. Kitchen and E. M. Riseman, A Fast Line Finder for
Vision-Guided Robot Navigation, [EEE Trans. Pattern Anal.
Mach. Intell., Vol. 12, No. 11, pp.1098-1102, 1990.

[2] A.D. Bimbo, L. Landi and S. Santini, Determination of Road
Directions Using Feedback Neural nets, Signal Processing, Vol.
32, pp. 147-160, 1993.

{31 D.H. Ballard and C.M. Brown, Computer Vision, Prentice-Hall,
Englewood Cliffs NJ(1982).John Wiley & Songs, Inc. 1976.

[4] J.B. Bums, A.R. Hanson, and E.M. Riseman, Extracting Straight
Lines, IEEE Trans. Pattern Anal. Mach. Intell., Vol PAMI-8, No.
4 pp. 425-455,1986.

[5] O. Faugeras, Three Dimensional Computer Vision - A Geometric
Viewpoint, The MIT Press, England. 1993.

[6] R. Deriche, Fast Algorithm for Low-Level Vision, IEEE Trans.
Pattern Anal. Mach. Intell.. Vol. 12, No. 1, pp. 78-87,1990.

{71 N.Guil, J. Villaba and E. L. Zapata, A Fast Hough Transform for
Segment Detection, JEEE Trans. Pattern Anal. Mach. Intell., Vol.
4, No. 11, pp. 1541-1548,1995.

[8] T. M. Breuel, Finding Lines Under Bounded Error, Pattern
Recognition, Vol. 29, No. 1, pp. 167-178, 1996.

91 P.C. Chung, C.T. Tasi, EL. Chen and Y.N. Sun, Polygonal

Approximation Using Competitive Hopfield Neural Network,

Pattern Recognition, Vol. 27, No. 11, pp. 1505-1512, 1994,

A. Pikaz and 1. Dinstein, Optimal Polygonal Approximation of

Digital Curves, Pattern Recognition, Vol. 28, No. 3, pp. 373-

379, 1995.

J. Yuan and CY. Suen, An Optimal O(n) Algorithm for

Identifying Line Segments from a Sequence of Chain Codes,

Pattern Recognition, Vol. 28, No. 5, pp. 635-646, 1995.

J.L. Melsa and D.L. Cohn, Decision and Estimation Theory,

McGraw-Hill, New York, 1978.

F. van deer Heijden, Edge and Line Feature Extraction Based on

Covariance Models, JEEE Trans. Pattern Anal. Mach. Intell., Vol.

17, No. 1, pp. 16-32, 1995.

K. Wall and P.E. Danielsson, A Fast Sequential Method for

Polygonal Approximation of Digitized Curves, CVGIP, Vol. 28,

pp. 220-227, 1984

{10

(1]

(12]

{13]

[14]

140

