DOI QR코드

DOI QR Code

Extraction of Building Boundary on Aerial Image Using Segmentation and Overlaying Algorithm

분할과 중첩 기법을 이용한 항공 사진 상의 빌딩 경계 추출

  • 김용민 (서울대학교 건설환경공학부) ;
  • 장안진 (서울대학교 건설환경공학부) ;
  • 김용일 (서울대학교 건설환경공학부)
  • Received : 2011.12.30
  • Accepted : 2012.01.26
  • Published : 2012.02.29

Abstract

Buildings become complex and diverse with time. It is difficult to extract individual buildings using only an optical image, because they have similar spectral characteristics to objects such as vegetation and roads. In this study, we propose a method to extract building area and boundary through integrating airborne Light Detection and Ranging(LiDAR) data and aerial images. Firstly, a binary edge map was generated using Edison edge detector after applying Adaptive dynamic range linear stretching radiometric enhancement algorithm to the aerial image. Secondly, building objects on airborne LiDAR data were extracted from normalized Digital Surface Model and aerial image. Then, a temporary building areas were extracted by overlaying the binary edge map and building objects extracted from LiDAR data. Finally, some building boundaries were additionally refined considering positional accuracy between LiDAR data and aerial image. The proposed method was applied to two experimental sites for validation. Through error matrix, F-measure, Jaccard coefficient, Yule coefficient, and Overall accuracy were calculated, and the values had a higher accuracy than 0.85.

도심지의 빌딩들은 시간이 갈수록 형태가 다양해지고, 식생이나 도로와 같은 객체들과 유사한 분광 특성을 나타냄으로써 광학 영상만을 이용하여 추출하기가 어려워지고 있다. 본 연구에서는 이러한 문제를 해결하기 위해 항공 Light Detection and Ranging(LiDAR) 자료와 항공 사진의 융합을 통해 항공 사진상에서의 빌딩과 그 경계를 추출하는 방법을 제안한다. 먼저 항공 사진에 Adaptive dynamic range linear stretching 방사 강조 기법을 적용하고, 에디슨 에지 디텍터를 이용하여 이진 경계 지도를 생성하였다. 동시에 항공 LiDAR 자료로부터 normalized Digital Surface Model을 생성하고, 빌딩 영역을 추출하여 이진 경계 지도와의 중첩을 통해 임시 빌딩 영역을 추출하였다. 마지막으로 항공 LiDAR 자료와 항공 사진 간의 위치 오차를 고려하여 경계 강화 과정을 수행함으로써 최종 빌딩 경계를 추출하였다. 제안 방법의 검증을 위해 두 개의 실험 지역을 선정하여 제안 방법을 적용하였고, 정량적인 정확도평가에서 F-measure, Jaccard coefficient, Yule coefficient, Overall accuracy의 값이 모두 0.85 이상의 정확도를 보여주었다.

Keywords

References

  1. 김용민, 최재완, 김용일 (2010), 영상 강조를 위한 Adaptive Dynamic Range Linear Stretching 기법, 대한원격탐사학회지, 대한원격탐사학회, 제 26권, 제 4호, pp. 395-401. https://doi.org/10.7780/kjrs.2010.26.4.395
  2. Abdullah-Al-Wadud, M., Kabir, Md. H., Akber dewan, M. A. and Chae, O. (2007), A Dynamic Histogram Equalization for Image Contrast Enhancement, IEEE Transaction on Consumer Electronics, IEEE, Vol. 53, No. 2, pp. 593-600. https://doi.org/10.1109/TCE.2007.381734
  3. Bork, E. W. and Su, J. G. (2007), Integrating LIDAR data and multispectral imagery for enhanced classification of rangeland vegetation: a meta analysis, Remote Sensing of Environment, RSE, Vol. 111, No. 1, pp. 11-24. https://doi.org/10.1016/j.rse.2007.03.011
  4. Chadwick, J. (2011), Integrated LiDAR and IKONOS multispectral imagery for mapping mangrove distribution and physical properties. International Journal of Remote Sensing, IJRS, DOI: 10.1080/01431161.2010.512944.
  5. Chen, Y., Su, W., Li, J. and Sun, Z. (2009), Hierarchical object oriented classification using very high resolution imagery and LIDAR data over urban areas, Advances in Space Research, ASR, Vol. 43, No. 7, pp. 1101-1110. https://doi.org/10.1016/j.asr.2008.11.008
  6. Ekhtari, N., Sahebi, M. R., Valadan Zoej, M. J. and Mohammadzadeh, A. (2008), Automatic building detection from LiDAR point cloud data, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVII, PartB 4, Beijing, pp. 473-477.
  7. Han, S., Lee, J. and Yu, K. (2007), An approach for segmentation of airborne laser point clouds utilizing scan-line characteristics, ETRI Journal, ETRI, Vol. 29, No. 5, pp. 641-648. https://doi.org/10.4218/etrij.07.0106.0316
  8. James, L. A., Watson, D. G. and Hansen, W. F. (2007), Using LiDAR data to map gullies and headwater streams under forest canopy: South Carolina, USA, Catena, Catena, Vol. 71, pp. 132-144. https://doi.org/10.1016/j.catena.2006.10.010
  9. Kim, Y. M., Byun, Y. G., Chang, A. J., Kim, Y. I. and Eo, Y. D. (2010), Building extraction on aerial image using airborne LiDAR data, International Symposium on Remote Sensing 2010, Jeju, Korea, pp. 628-631.
  10. Koch, B., Straub, C., Dees, M., Wang, Y. and Weinacker, H. (2009), Airborne laser data for stand delineation and information extraction. International Journal of Remote Sensing, IJRS, Vol. 30, No. 4, pp. 935-963. https://doi.org/10.1080/01431160802395284
  11. Lee, J., Han, S., Byun, Y. and Kim, Y. (2011), Extraction and regularization of various building boundaries with complex shapes utilizing distribution characteristics of airborne LIDAR points, ETRI journal, ETRI, Vol. 33, No. 4, pp. 547-557. https://doi.org/10.4218/etrij.11.1610.0022
  12. Lee, D. S. and Shan, J. (2003), Combining LiDAR Elevation Data and IKONOS Multispectral Imagery for Coastal Classification Mapping. Marine Geodesy, Marine Geodesy, Vol. 26, pp. 117-127. https://doi.org/10.1080/01490410306707
  13. Ma, R. (2005), DEM Generation and Building Detection from LiDAR Data, Photogrammetric Engineering and Remote Sensing, ASPRS, Vol. 71, No. 7, pp. 847-854. https://doi.org/10.14358/PERS.71.7.847
  14. Meer, P. and Georgescu, B. (2001), Edge detection with embedded confidence, IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE, Vol. 23, No. 12, pp. 1351-1365. https://doi.org/10.1109/34.977560
  15. Park, G. H., Cho, H. H. and Choi, M. R. (2008), A contrast enhancement method using dynamic range separate histogram equalization, IEEE Transactions on Consumer Electronics, IEEE, Vol. 54, No. 4, pp. 1981-1987. https://doi.org/10.1109/TCE.2008.4711262
  16. Rosin, P. L. and Ioannidis, E. (2003), Evaluation of global image thresholding for change detection, Pattern Recognition Letters, Pattern Recognition, Vol. 24, No. 14, pp. 2345-2356. https://doi.org/10.1016/S0167-8655(03)00060-6
  17. Rottensteiner, F., Trinder, J., Clode, S. and Kubik, K. (2005), Using the Dempster-Shafer method for the fusion of LIDAR data and multispectral images for building detection. Information Fusion, Information Fusion, Vol. 6, No. 4, pp. 283-300. https://doi.org/10.1016/j.inffus.2004.06.004
  18. Sampath, A. and Shan, J. (2007), Building boundary tracing and regularization from airborne LiDAR point clouds, Photogrammetric Engineering and Remote Sensing, ASPRS, Vol. 73, No. 7, pp. 805-812. https://doi.org/10.14358/PERS.73.7.805
  19. Shen, W., Zhang, J. and Yuan, F. (2011), A new algorithm of building boundary extraction based on LIDAR data, Geoinformatics, 2011 19th International Conference, unpaginated CD-ROM.
  20. Shrestha, R. L., Carter, W. E., Lee, M., Finer, P. and Satori, M. (1999), Airborne laser swath mapping: Accuracy assessment for surveying and mapping applications, Journal of the American Congress on Surveying and Mapping, Surveying and Land Information Systems, Vol. 59, No. 2, pp. 83-94.
  21. Sohn, G., and Dowman, I. (2003), Building extraction using LiDAR DEMs and IKONOS images, International Archives of Photogrammetry and Remote Sensing, WGIII/3 Workshop on3-D Reconstruction from Airborne Laserscanner and InSAR Data, Dresden, Germany, Vol. 34,3/W13.
  22. Vosselman, G. and Dijkman, S. (2001), 3D building model reconstruction from point clouds and ground plans, International Archives of Photogrammetry and Remote Sensing, Volume XXXIV-3/W4, Annapolis, pp. 37-43.
  23. Wang, S., Ge, F. and Liu, T. (2006), Evaluation edge detection through boundary detection, EURASIP Journal on Applied Signal Processing, pp. 1-15.
  24. Yu, B., Liu, H., Zhang, L., and Wu, J. (2009), An object-based two-stage method for a detailed classification of urban landscape components by integrating airborne Lidar and color infrared image data: A case study of downtown Houston., Urban Remote Sensing Event, 2009 Joint.
  25. Ziadat, F. M. (2007), Effect of Contour intervals and grid cell size on the accuracy of DEMs and slop derivatives, Transactions in GIS, Transactions in GIS, Vol. 11, No. 1, pp. 67-81.

Cited by

  1. Improved Classification Accuracy Based on the Output-Level Fusion of High-Resolution Satellite Images and Airborne LiDAR Data in Urban Area vol.11, pp.3, 2014, https://doi.org/10.1109/LGRS.2013.2273397
  2. Construction of the Regional Basemap for a Developing Country: Focused on the Bab Ezzouar Municipality in Algeria vol.23, pp.1, 2015, https://doi.org/10.7319/kogsis.2015.23.1.089
  3. Generation of Land Cover Maps through the Fusion of Aerial Images and Airborne LiDAR Data in Urban Areas vol.8, pp.6, 2016, https://doi.org/10.3390/rs8060521
  4. Development of Building 3D Spatial Information Extracting System using HSI Color Model vol.21, pp.4, 2013, https://doi.org/10.7319/kogsis.2013.21.4.151