• Title/Summary/Keyword: portland cement mortar

Search Result 192, Processing Time 0.027 seconds

A Study on the Basic Properties of Cement Mortar Using Limestone Powder (석회석 미분말을 사용한 시멘트 모르타르의 기초특성에 관한 연구)

  • Kang, In-Gyu;La, Jung-Min;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.19-20
    • /
    • 2022
  • Portland Limestone Cement (PLC) is a blended cement using limestone powder as SCMs (Supplementary Cementitious Materials), and is currently regarded as an essential means for achieving carbon neutral in the cement industry. This study was performed to investigate the fresh and hardened properties of cement mortar according to the fineness and replacement ratio of limestone powder. As a result, the compressive strength of mortar used high blaine limestone powder were equivalent level of that of OPC.

  • PDF

Novel approach to improve nano green mortar behaviour using nano-paper waste with nano-metakaolin

  • Radwa Defalla Abdel, Hafez;Bassam A., Tayeh;Raghda Osama Abd-Al, Ftah;Khaled, Abdelsamie
    • Advances in concrete construction
    • /
    • v.14 no.5
    • /
    • pp.341-354
    • /
    • 2022
  • Treatment of solid waste building materials is a crucial method of disposal and an area of ongoing research. New standards for the treatment of solid waste building materials are necessary due to multisource features, huge quantities, and complicated compositions of solid waste. In this research, sustainable nanomaterial mixtures containing nano-paper waste (NPW) and nano-metakaolin (NMK) were used as a substitute for Portland cement. Portland cement was replaced with different ratios of NPW and NMK (0%, 4%, 8%, and 12% by weight of cement) while the cement-to-water ratio remained constant at 0.4 in all mortar mixtures. The fresh properties had a positive effect on them, and with the increase in the percentage of replacement, the fresh properties decreased. The results of compressive strength at 7 and 28 days and flexural strength at 28 days show that the nanomaterials improved the strength, but the results of NMK were better than those of NPW. The best replacement rate was 8%, followed by 4%, and finally 12% for both materials. The combination of NMK and NPW as a replacement (12% NMK + 12% NPW) showed less shrinkage than the others because of the high pozzolanic reactivity of the nanomaterials. The combination of NMK and NPW improved the microstructure by increasing the hydration volume and lowering the water in the cement matrix, as clearly observed in the C-S-H decomposition.

The Effects of Sepiolite on the Properties of Portland Cement Mortar (해포석이 시멘트 경화체의 특성에 미치는 영향)

  • Kang, Hyun-Ju;Song, Myong-Shin;Kim, Young-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.8
    • /
    • pp.443-452
    • /
    • 2008
  • Shrinkage crack is a major concern for cement materials, especially for flat structures such as Korean On-Dol floor system, flooring for garages, and wall. One of the methods to reduce the adverse effects of shrinkage cracking is to reinforce cement materials with shot randomly distributed fibers. The efficiency of inorganic fibrous material to arresting cracks in cementitious composites was studied. Cement materials reinforced with five different qualities of inorganic fibrous material were tested. Contents of inorganic fibrous material were 1.0 kg, 1.5 kg, 2.0 kg, 2.5 kg, 3.0 kg by weight of cement mortar and C : S types of cement mortar were 1:3 and 1:4. W/C were 60% and 80%. Cement mortar of inorganic fibrous material reinforcement showed an ability to reduce the crack width and crack length significantly as compared to unreinforced cement mortar. $40%{\sim}60%$ drop in shrinkage crack of 1:4 cement mortar with 1.5 kg over was observed.

Fundamental Properties of Mortar Using Rapid-Setting Cement (초속경시멘트를 혼입한 모르타르의 기초물성평가)

  • Kim, Seong-Soo;Jung, Ho-Seop;Park, Kwang-Pil;Koh, Joon-Ho;Jeon, Chan-Ki;Jeon, Joong-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.589-592
    • /
    • 2006
  • The growth in concrete structure repair has prompted major efforts to develop high early strength concrete. So, we were examined fundamental properties of cement mortar using the ordinary portland cement with rapid-setting cement. The experiments were carried out to investigate the characteristics of rapid-setting cement according to the blended ratio. The containing ratio of rapid-setting cement were changed five steps (20, 30, 50, 70, 100%) and then the flow value, setting time, compressive and bond strength test of cement mortar with RSC were investigated in this study.

  • PDF

Setting and Hardening of Portland Cement Mortar Investigated with Wave Reflection Factor (WRF를 이용한 모르터의 응결 및 경화 예측)

  • ;Thomas , Voigt;Surendra P. Shah
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.834-839
    • /
    • 2003
  • Previous research has been conducted on an ultrasonic wave reflection method that utilizes a steel plate embedded in the concrete to measure the reflection loss of shear waves at the steel-concrete interface. The reflection loss has been shown to have a linear relationship to compressive strength at early ages. The presented investigations continue this research by examining the fundamental relationship between the reflection loss, measured with shear waves, and the hydration kinetics of Portland cement mortar, represented by dynamic elastic moduli, compressive strength and degree of hydration. Dynamic elastic moduli are measured by fundamental resonant frequency and degree of hydration is determined by thermogravimetric analysis. The water/cement ratio was varied for the tested mixture compositions. The results presented herein show that compressive strength, dynamic shear modulus and degree of hydration have a linear relationship to the reflection loss for the tested mortars at early ages.

  • PDF

Effects of Cement Type and Fly Ash on the Sulfate Attack Using ASTM C 1012

  • Ahn Nam-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.130-138
    • /
    • 2004
  • The primary factors that affecting concrete sulfate resistance are the chemistry of the Portland cement and the chemistryandreplacementlevelofmineraladmixtures. In order to investigate the effect of those on the sulfate attack the testing program involved the testing of several different mortar mixes using the standardized test, ASTM C 1012. four different cements were evaluated including one Type I cement, two Type I-II cements, and one Type V cement. Mortar mixes were also made with mineral admixtures as each cement was combined with three different types of mineral admixtures. One Class F fly ash and one Class C fly ash was added in various percent volumetric replacement levels. The expansion measurements of mortar bars were taken and compared with expansion criteria recommended from past experience to investigate the effect of each factor.

Influence of changes in cement fineness on lean mixture mortar quality (시멘트 분말도 변화가 빈배합 모르타르의 품질에 미치는 영향)

  • Lee, Jae-Jin;Moon, Byeong-Ryong;Kim, Yeong-Tae;Jang, Deok-Bae;Yang, Seong-Hwan;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.100-101
    • /
    • 2016
  • The fineness degree of Ordinary Portland Cement (OPC henceforth) usually used in Korea's construction sites, is designated as over 2,800㎠/g. But the higher the fineness, the surface area of hydration reaction on water increases as well, resulting in large early age strength and high-intensity; so the trend is to prefer a high degree of fineness. But from a pore-space filling perspective, fine-particled cement is not always beneficial to intensity. Therefore in this study artificial modifications were given to cement fineness to analyze the effect of various fineness changes on the liquidity, air quantity and intensity of lean mixture cement mortar. As a result, the greater the degree of fineness, the better the cement was, with fine particle+OPC having the most satisfactory results due to consecutive particle distribution.

  • PDF

Strength and durability study on cement mortar containing nano materials

  • Ashok, M.;Parande, A.K.;Jayabalan, P.
    • Advances in nano research
    • /
    • v.5 no.2
    • /
    • pp.99-111
    • /
    • 2017
  • Nano particles have been gaining increasing attention and applied in many fields to fabricate new materials with novel functions due to their unique physical and chemical properties. In the present study two nano materials, namely nano silica (NS) and nano clay metakaolin (NMK) were partially replaced with ordinary Portland cement (OPC). The replacement level was varied from 0.5 to 2.0% in OPC and blended in cement mortar with a water cement ratio of 0.40. Mechanical property studies and durability experiments such as compressive strength, tensile strength, water absorption, depth of chloride penetration test. Nano silica was synthesized from rice husk ash and analyze the size using particle size analyzer. The results indicate that the compressive and tensile strength of the cement mortars containing nano materials were higher strength compared to the plain mortar with the same water cement ratio.

Fundamental Properties of Mortar Utilizing Waste Concrete Power (폐콘크리트 분말을 활용한 모르타르의 기초물성에 관한 연구)

  • Choi, Yun-Wang;Moon, Dae-Joong;Kim, Sung-Su;Kim, Ki-Hyung;Moon, Han-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.620-623
    • /
    • 2004
  • Waste concrete powder(WCP) has been estimated with a great value-added material as by-product of waste concrete manufactured to fine and coarse aggregate for concrete, because it is able to utilized for cement clinker and concrete admixture. In the experimental results for this study, chemical composition of WCP was similar to that of cement, and specific gravity of WCPs were 2.46 and 2.48 due to internal micro-void of WCP. Final setting of paste with WCP was delayed, and flow value of mortar with WCP was tendency to reduced in comparison with that of paste and mortar with only ordinary portland cement as replacement ratio of WCP increased. Furthermore, sorptivity of mortar with WCP was increased as replacement ratio of WCP increased. Compressive strength of mortar with $15\%$ WCP was developed about 27MPa at 28days.

  • PDF

Setting and Strength Properties of Mortar Containing Steel Furnace Slag Dust

  • Choi, Yun-Wang;Chung, Jee-Seung;Moon, Dae-Joong;Shin, Hwa-Cheol;Jang, Lee-Duck
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.193-196
    • /
    • 2003
  • In this paper, the experimental investigation for the setting properties of cement paste, the consistency and strength properties of mortar with steel furnace slag dust was performed and compared with those of cement paste and mortar with ground granulated blast furnace slag. When steel furnace slag dust was replaced with normal portland cement, setting time and flow value indicated to good results like as mortar with ground granulated blast furnace slag. However, mortar with steel furnace slag dust expressed to appreciably strength devaluation according to containing ratio, and did not indicate the pozzolanic reaction like as ground granulated blast furnace slag.

  • PDF