• Title/Summary/Keyword: porous structures

Search Result 524, Processing Time 0.023 seconds

Wave Control by an Array of Porous Dual Cylindrical Structures (투과성 이중 원통구조물 배열에 의한 파랑제어)

  • CHO IL-HYOUNG
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.7-14
    • /
    • 2004
  • The interaction of incident manochromatic waves with an array of N surface-piercing porous dual cylindrical structures is investigated in the frame of three-dimensional linear potential theory. The dual cylindrical structure is camposed of concentric two cylinders. The exterior cylinder is porous and the interior cylinder is impermeable. The fluid domain is divided into N+1 regions i.e. a single exterior region and N interior regions. The diffraction potentials in each region representing the scattering of incident waves by an array of porous cylindrical structures are expressed by the Fourier Bessel series. The unknown coefficients in each region are determined by applying the porous boundary condition and continuity of mass flux at the matching boundary. It is found that an array of porous cylindrical structures reduces both the wave forces and the wave run-up, and shows the excellent performance of wave blocking. The results show that various types of breakwater exchanging seawater are prospective by controlling the porosity and the configuration of cylindrical structures.

Highly Sensitive Trimethylamine Sensing Characteristics of V-doped NiO Porous Structures (바나듐이 도핑된 NiO 다공성 구조의 고감도 Trimethylamine 감응 특성)

  • Park, Sei Woong;Yoon, Ji-Wook;Park, Joon-Shik;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.218-222
    • /
    • 2016
  • Pure and V-doped NiO porous structures were prepared by the evaporation-induced surfactant assembly and subsequent pyrolysis of assembled structures, and their gas sensing characteristics were investigated. Pure NiO porous structures showed negligible gas responses (S=$R_g/R_a$, $R_g$: sensor resistance in analytic gas; $R_a$: sensor resistance in air) to 5 ppm trimethylamine (S=1.17) as well as other interfering gases such as ethanol, p-xylene, toluene, benzene and formaldehyde (S=1.02-1.13). In contrast, the V-doped NiO porous structures exhibited a high response and selectivity to 5 ppm trimethylamine (S=14.5) with low cross-responses to other interfering gases (S=4.0-8.7) at $350^{\circ}C$. The high gas response of V-doped NiO porous structures to trimethylamine was explained by electronic sensitization, that is, the increase in the chemoresistive variation due to the decrease in the hole concentration. The enhanced selectivity to trimethylamine was discussed in relation to the interaction between basic trimethylamine gas and acidic V catalysts.

Influence of a Structure by the Submerged Breakwater and the Porous Wave Absorber (수중방파제와 다공성 소파장치가 구조물에 미치는 영향)

  • Park, Jin-Ho;Jung, Tae-Hwa;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.225-228
    • /
    • 2008
  • There are many studies about submerged structures or porous wave absorbers to decrease damage of coast and structures. Submerged structures and porous wave absorber are decreasing energy of incoming wave by reflecting or dissipation with changing depth or with porous rubble mound. This study addresses the reflection and transmission of long wave from a trapezoidal breakwater and a vertical porous wave absorber at the same time. A systematic shape transfer is derived to determine wave reflection and transmission. And periodic solutions are matched at the slope and the front face of the absorber by assuming continuity of pressure and mass. The transmission coefficient is determined as a function of parameters describing the incoming waves, transmitting waves through the trapezoidal breakwater and the absorber characteristics.

  • PDF

Fabrication of Nitrogen Self-Doped Porous Carbons from Melamine Foam for Supercapacitors (슈퍼커패시터용 멜라민 폼으로부터 질소가 자가 도핑된 다공성 탄소 재료의 제조)

  • Lee, Byoung-Min;Chang, Hyeong-Seok;Choi, Jae-Hak;Hong, Sung-Kwon
    • Korean Journal of Materials Research
    • /
    • v.31 no.5
    • /
    • pp.264-271
    • /
    • 2021
  • Porous carbons have been widely used as electrode material for supercapacitors. However, commercial porous carbons, such as activated carbons, have low electrochemical performance. Nitrogen-doping is one of the most promising strategies to improve electrochemical performance of porous carbons. In this study, nitrogen self-doped porous carbon (NPC) is prepared from melamine foam by carbonization to improve the supercapacitive performance. The prepared NPC is characterized in terms of the chemical structures and elements, morphology, pore structures, and electrochemical performance. The results of the N2 physisorption measurement, X-ray diffraction, and Raman analyses reveal that the prepared NPC has bimodal pore structures and pseudo-graphite structures with nitrogen functionality. The NPC-based electrode exhibits a gravimetric capacitance of 153 F g-1 at 1 A g-1, a rate capability of 73.2 % at 10 A g-1, and an outstanding cycling ability of 97.85 % after 10,000 cycles at 10 A g-1. Thus, the NPC prepared in this study can be applied as electrode material for high-performance supercapacitors.

Fabrication Process of Lanthanide-Doped Xerogel/Porous Anodic Alumina Structures for an Image Formation

  • Smirnov, A.;Molchan, I.;Gaponenko, N.;Labunov, V.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.769-772
    • /
    • 2004
  • We report on the developed fabrication method of lanthanide-doped xerogel/porous anodic alumina structures for an image formation via the aluminum anodization, the sol-gel synthesis, and the photolithography process. The structures of europium- or terbium-doped xerogel/porous anodic alumina are also considered in view of application in electroluminescent devices.

  • PDF

Catalytic CO Oxidation Over Ni Films Supported by Carbon Fiber

  • Seo, Hyun-Ook;Nam, Jong-Won;Kim, Kwang-Dae;Kim, Young-Dok;Lim, Dong-Chan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.266-266
    • /
    • 2012
  • Ni films with a thickness of 700-800 nm were deposited on carbon fiber layers using electroless deposition, and surface structures and chemical properties of these films with various annealing temperatures (300, 600 and $900^{\circ}C$) were studied. $600^{\circ}C$-annealing under atmospheric conditions resulted in formation of porous surface structures with a mean pore size of ~100 nm, whereas the other samples showed non-porous surface structures. $600^{\circ}C$-annealed Ni film showed much higher reactivities for toluene adsorption and CO oxidation comparing to other non-porous surfaces.

  • PDF

Activated Carbons as Electrode Materials in Electric Double-Layer Capacitors I. Electrochemical Properties of Activated Carbons in Relation to their Porous Structures and Surface Oxygen Functional Groups

  • Kim, Chang-Hee;Pyun, Su-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.819-826
    • /
    • 2003
  • This article is concerned with the overview of activated carbons as electrode materials in electric double-layer capacitors. Firstly, this article introduced various types of activated carbons with their precursors and manufacturing conditions which can be divided into two main steps of the carbonization and activation processes. Secondly, the present article gave the detailed discussion about the porous structures and examined previous works on the electrochemical behaviors of activated carbons in relation to their porous structures, along with our recent works. Finally, this article characterized the surface oxygen functional groups and presented their influence on the electrochemical properties of activated carbons by reviewing our recent results.

Wind loads for high-solidity open-frame structures

  • Amoroso, Samuel D.;Levitan, Marc L.
    • Wind and Structures
    • /
    • v.14 no.1
    • /
    • pp.1-14
    • /
    • 2011
  • Open frame structures, such as those commonly found in industrial process facilities, are often densely occupied with process related equipment. This paper presents a method for estimating wind loads for high-solidity open frame structures that differs from current approaches, which accumulate wind load contributions from various individual structure components. The method considers the structure as a porous block of arbitrary plan dimension that is subject to wind from any direction. The proposed method compares favorably with wind tunnel test results for similar structures. The possibility of defining an upper bound force coefficient is also discussed.

Bragg Reflection of Sinusoidal Waves due to Trapezoidal Submerged Porous Breakwaters (사다리꼴형상 투과성 수중방파제에 의한 정현파의 Bragg 반사)

  • Jeon, Chan-Hoo;Cho, Yong-Sik;Lee, Jong-In
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.5
    • /
    • pp.741-749
    • /
    • 2003
  • This study presents a combined experimental and numerical effort to investigate experimentally and numerically the Bragg reflection of sinusoidal waves due to trapezoidal submerged porous breakwaters. Numerical predictions of the study are verified by comparing to laboratory measurements. In the numerical model, the flow in porous structures is described by the spatially averaged Navier-Stokes equations and the volume of fluid method is employed to track the free surface displacements. Numerical solutions are agree well with laboratory measurements. The reflection coefficients of porous structures are smaller than those of non-porous structures and become stronger in proportion to the increase of number of submerged breakwaters.

Limit elastic speed analysis of rotating porous annulus functionally graded disks

  • Madan, Royal;Bhowmick, Shubhankar;Hadji, Lazreg;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.375-388
    • /
    • 2022
  • In this work, limit elastic speed analysis of functionally graded porous rotating disks has been reported. The work proposes an effective approach for modeling the mechanical properties of a porous functionally graded rotating disk. Four different types of porosity models namely: uniform, symmetric, inner maximum, and outer maximum distribution are considered. The approach used is the variational principle, and the solution has been achieved using Galerkin's error minimization theory. The study aims to investigate the effect of grading indices, aspect ratio, porosity volume fraction, and porosity types on limit angular speed for uniform and variable disk geometries of constant mass. To validate the current study, finite element analysis has been used, and there is good agreement between the two methods. The study yielded a decrease in limit speed as grading indices and aspect ratio increase. The porosity volume fraction is found to be more significant than the aspect ratio effect. The research demonstrates a range of operable speeds for porous and non-porous disk profiles that can be used in industries as design data. The results show a significant increase in limit speed for an exponential disk when compared to other disk profiles, and thus, the study demonstrates a range of FG-based structures for applications in industries that will not only save material (lightweight structures) but also improve overall performance.