Browse > Article
http://dx.doi.org/10.12989/scs.2022.42.3.375

Limit elastic speed analysis of rotating porous annulus functionally graded disks  

Madan, Royal (Department of Mechanical Engineering, National Institute of Technology Raipur (C.G))
Bhowmick, Shubhankar (Department of Mechanical Engineering, National Institute of Technology Raipur (C.G))
Hadji, Lazreg (Faculty of Civil Engineering, Ton Duc Thang University)
Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
Publication Information
Steel and Composite Structures / v.42, no.3, 2022 , pp. 375-388 More about this Journal
Abstract
In this work, limit elastic speed analysis of functionally graded porous rotating disks has been reported. The work proposes an effective approach for modeling the mechanical properties of a porous functionally graded rotating disk. Four different types of porosity models namely: uniform, symmetric, inner maximum, and outer maximum distribution are considered. The approach used is the variational principle, and the solution has been achieved using Galerkin's error minimization theory. The study aims to investigate the effect of grading indices, aspect ratio, porosity volume fraction, and porosity types on limit angular speed for uniform and variable disk geometries of constant mass. To validate the current study, finite element analysis has been used, and there is good agreement between the two methods. The study yielded a decrease in limit speed as grading indices and aspect ratio increase. The porosity volume fraction is found to be more significant than the aspect ratio effect. The research demonstrates a range of operable speeds for porous and non-porous disk profiles that can be used in industries as design data. The results show a significant increase in limit speed for an exponential disk when compared to other disk profiles, and thus, the study demonstrates a range of FG-based structures for applications in industries that will not only save material (lightweight structures) but also improve overall performance.
Keywords
effective yield stress; Halpin-Tsai; limit elastic speed analysis; porous FG disk; variational principle;
Citations & Related Records
Times Cited By KSCI : 20  (Citation Analysis)
연도 인용수 순위
1 Ghandourah, E.E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models", Steel Compos. Struct., 36, 293-305. https://doi.org/10.12989/SCS.2020.36.3.293.   DOI
2 Li, Y., Feng, Z., Hao, L., Huang, L., Xin, C., Wang, Y. and Peijs, T. (2020), "A review on functionally graded materials and structures via additive manufacturing: from multi-scale design to versatile functional properties", Adv. Mater. Technol., 5(6), 1900981. https://doi.org/10.1002/admt.201900981.   DOI
3 Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2021), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA", Compos. Struct., 259, 113216. https://doi.org/10.1016/j.compstruct.2020.113216.   DOI
4 Ebrahimi, F. and Barati, M.R. (2016), "Thermal buckling analysis of size-dependent FG nanobeams based on the third-order shear deformation beam theory", Acta Mechanica Solida Sinica, 29(5), 547-554. https://doi.org/10.1016/S0894-9166(16)30272-5.   DOI
5 Madan, R., Saha, K. and Bhowmick, S. (2019a), "Limit elastic analysis of rotating annular disks having sigmoid-FGM composition based on MROM", WJE, 16(6), 806-813. https://doi.org/10.1108/WJE-05-2019-0155.   DOI
6 Ramteke, P.M., Panda, S.K. and Sharma, N. (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., 33, 865-875. https://doi.org/10.12989/SCS.2019.33.6.865.   DOI
7 Erguder, T.O., Kaya, G., Hacisalihoglu, I., Yay, B. and Yildiz, F. (2020), "Wear behavior of Ni-B coated-hard anodized Al7Si alloy and machining performance with ZrN ceramic film coated carbide tool", Surfaces Interfaces, 21, 100768. https://doi.org/10.1016/j.surfin.2020.100768.   DOI
8 Ebrahimi F, Barati MR (2017), "Small-scale effects on hygrothermo-mechanical vibration of temperature-dependent nonhomogeneous nanoscale beams", Mechanics of Advanced Materials and Structures, 24(11), 924-936. http://dx.doi.org/10.1080/15376494.2016.1196795   DOI
9 Dastjerdi, S., Tadi Beni, Y. and Malikan, M. (2020), "A comprehensive study on nonlinear hygro-thermo-mechanical analysis of thick functionally graded porous rotating disk based on two quasi-three-dimensional theories", Mech. Based Des. Struct. Mach., 1-30. https://doi.org/10.1080/15397734.2020.1814812.   DOI
10 Cuiyan, L., Zhao, X., Haibo, O., Liyuan, C., Jianfeng, H. and Yijun, L. (2020), "Preparation, adsorption properties and microwave-assisted regeneration of porous C/SiC ceramics with a hierarchical structure", Appl. Compos. Mater., 27(3), 131-148. https://doi.org/10.1007/s10443-020-09801-x.   DOI
11 Farhatnia, F., Babaei, J. and Foroudastan, R. (2018), "Thermomechanical nonlinear bending analysis of functionally graded thick circular plates resting on winkler foundation based on sinusoidal shear deformation theory", Arab. J. Sci. Eng., 43(3), 1137-1151. https://doi.org/10.1007/s13369-017-2753-2.   DOI
12 Arefi, M. and Zenkour, A.M. (2017), "Size-dependent electro-magneto-elastic bending analyses of the shear-deformable axisymmetric functionally graded circular nanoplates", Eur Phys. J. Plus, 132, 423. https://doi.org/10.1140/epjp/i2017-11666-6.   DOI
13 Arefi, M., Firouzeh, S., Mohammad-Rezaei Bidgoli, E. and Civalek, O . (2020a), "Analysis of porous micro-plates reinforced with FG-GNPs based on Reddy plate theory", Compos. Struct., 247, 112391. https://doi.org/10.1016/j.compstruct.2020.112391.   DOI
14 Arefi, M., Kiani, M. and Civalek, O. (2020b), "3-D magneto-electro-thermal analysis of layered nanoplate including porous core nanoplate and piezomagnetic face-sheets", Appl. Phys. A., 126, 76. https://doi.org/10.1007/s00339-019-3241-1.   DOI
15 Arefi, M. and Moghaddam, S.K. (2019), "Electro-elastic analysis of functionally graded piezoelectric variable thickness rotating disk under thermal environment", Struct. Eng. Mech., 71, 23-35. https://doi.org/10.12989/SEM.2019.71.1.023.   DOI
16 Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.   DOI
17 Barati, M.R. and Shahverdi, H. (2017), "Aero-hygro-thermal stability analysis of higher-order refined supersonic FGM panels with even and uneven porosity distributions", J. Fluids Struct., 73, 125-136. http://dx.doi.org/10.1016/j.jfluidstructs.2017.06.007.   DOI
18 Bucciarelli, F., Malfense Fierro, G.P., Zarrelli, M. and Meo, M. (2019), "A non-destructive method for evaluation of the out of plane elastic modulus of porous and composite materials", Appl. Compos. Mater., 26(3), 871-896. https://doi.org/10.1007/s10443-018-9754-5.   DOI
19 Dai, T., Dai, H.L. and Lin, Z.Y. (2019), "Multi-field mechanical behavior of a rotating porous FGMEE circular disk with variable thickness under hygrothermal environment", Compos. Struct., 210, 641-656. https://doi.org/10.1016/j.compstruct.2018.11.077   DOI
20 Guler, O., Varol, T., Alver, u ., Kaya, G. and Yildiz, F. (2021), "Microstructure and wear characterization of Al2O3 reinforced silver coated copper matrix composites by electroless plating and hot pressing methods", Mater. Today Commun., 27, 102205. https://doi.org/10.1016/j.mtcomm.2021.102205.   DOI
21 Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2015), "Thermomechanical vibration behavior of FG nanobeams subjected to linear and non-linear temperature distributions", J. Thermal Stresses, 38, 1360-1386. https://doi.org/10.1080/01495739.2015.1073980.   DOI
22 Eltaher, M.A., Fouda, N., El-midany, T. and Sadoun, A.M. (2018), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Braz. Soc. Mech. Sci. Eng., 40(3), 141. https://doi.org/10.1007/s40430-018-1065-0.   DOI
23 Fantuzzi, N., Leonetti, L., Trovalusci, P. and Tornabene, F. (2018), "Some novel numerical applications of cosserat continua", Int. J. Comput. Methods, 15(06), 1850054. https://doi.org/10.1142/S0219876218500548.   DOI
24 Guellil, M., Saidi, H., Bourada, F., Bousahla, A.A, Tounsi, A., Al-Zahrani, M.M., Hussain, M., Mahmoud, S.R. (2021), "Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation", Steel Compos. Struct., 38(1), 1-15. https://doi.org/10.12989/scs.2021.38.1.001.   DOI
25 Hacisalihoglu, I., Kaya, G., Erguder, T.O., Mandev, E., Manay, E. and Yildiz, F. (2021), "Tribological and thermal properties of plasma nitrided Ti45Nb alloy", Surfaces Interfaces, 22, 100893. https://doi.org/10.1016/j.surfin.2020.100893.   DOI
26 Hadj, B., Rabia, B. and Daouadji, T.H. (2019), "Influence of the distribution shape of porosity on the bending FGM new plate model resting on elastic foundations", Struct. Eng. Mech., 72, 61-70. https://doi.org/10.12989/SEM.2019.72.1.061.   DOI
27 Jamaludin, S.N.S., Latiff, M.I.A., Nuruzzaman, D.M., Ismail, N. M. and Basri, S. (2020), "Investigation on microstructure and hardness of nickel-alumina functionally graded material", Materials Today: Proceedings, 29, 127-132. https://doi.org/10.1016/j.matpr.2020.05.644.   DOI
28 Jia, A., Liu, H., Ren, L., Yun, Y. and Tahouneh, V. (2020), "Influence of porosity distribution on vibration analysis of GPLs-reinforcement sectorial plate", Steel Compos. Struct., 35(1), 111-127. https://doi.org/10.12989/scs.2020.35.1.111.   DOI
29 Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.   DOI
30 Jabbari, M., Hashemitaheri, M., Mojahedin, A. and Eslami, M.R. (2014), "Thermal buckling analysis of functionally graded thin circular plate made of saturated porous materials", J. Thermal Stresses, 37(2), 202-220. https://doi.org/10.1080/01495739.2013.839768.   DOI
31 Kapuria, S., Bhattacharyya, M. and Kumar, A.N. (2008), "Theoretical modeling and experimental validation of thermal response of metal-ceramic functionally graded beams", J. Thermal Stresses 31, 759-787. https://doi.org/10.1080/01495730802194292.   DOI
32 Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. http://dx.doi.org/10.1016/j.matdes.2016.12.061.   DOI
33 Liang, D., Wu, Q., Lu, X. and Tahouneh, V. (2020), "Vibration behavior of trapezoidal sandwich plate with functionally graded-porous core and graphene platelet-reinforced layers", Steel Compos. Struct., 36, 47-62. https://doi.org/10.12989/SCS.2020.36.1.047.   DOI
34 Madan, R., Bhowmick, S. and Nath Saha, K. (2018), "Stress and deformation of functionally graded rotating disk based on modified rule of mixture", Mater. Today: Proceedings, 5(9), 17778-17785. https://doi.org/10.1016/j.matpr.2018.06.102.   DOI
35 Hadji, L. and Avcar, M. (2021), "Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory", Advan. Nano Res., 10, 281-293. https://doi.org/10.12989/ANR.2021.10.3.281.   DOI
36 Kujala, S., Ryhanen, J., Danilov, A. and Tuukkanen, J. (2003), "Effect of porosity on the osteointegration and bone ingrowth of a weight-bearing nickel-titanium bone graft substitute", Biomaterials, 24(25), 4691-4697. https://doi.org/10.1016/S0142-9612(03)00359-4.   DOI
37 Madan, R. and Bhowmick, S. (2021), "Modeling of functionally graded materials to estimate effective thermo-mechanical properties", WJE ahead-of-print(ahead-of-print). https://doi.org/10.1108/WJE-09-2020-0445.   DOI
38 Madan, R., Bhowmick, S. and Saha, K. (2020), "A study based on stress-strain transfer ratio calculation using Halpin-Tsai and MROM material model for limit elastic analysis of metal matrix FG rotating disk", FME Transactions, 48(2), 204-210. https://doi.org/10.5937/fmet2001204R.   DOI
39 Arefi, M. (2015), "The effect of different functionalities of FGM and FGPM layers on free vibration analysis of the FG circular plates integrated with piezoelectric layers", Smart Struct. Syst.,15, 1345-1362. https://doi.org/10.12989/SSS.2015.15.5.1345.   DOI
40 Alnujaie, A, Akbas, S.D., Eltaher, M.A. and Assie, A.E. (2021), "Damped forced vibration analysis of layered functionally graded thick beams with porosity", Smart Struct. Syst., 27, 679-689. https://doi.org/10.12989/SSS.2021.27.4.679.   DOI
41 Arefi, M., Kiani, M. and Rabczuk, T. (2019), "Application of nonlocal strain gradient theory to size dependent bending analysis of a sandwich porous nanoplate integrated with piezomagnetic face-sheets", Compos. Part B: Eng., 168, 320-333. https://doi.org/10.1016/j.compositesb.2019.02.057.   DOI
42 Arefi, M. and Allam, M.N.M. (2015), "Nonlinear responses of an arbitrary FGP circular plate resting on the Winkler-Pasternak foundation", Smart Struct. Syst., 16(1), 81-100. https://doi.org/10.12989/SSS.2015.16.1.081.   DOI
43 Madan, R., Saha, K.N. and Bhowmick, S. (2020), "Limit elastic analysis of FG ceramic rotating disk on the basis of effective mechanical properties", MSF, 978, 470-476. https://doi.org/10.4028/www.scientific.net/MSF.978.470.   DOI
44 Heidari, Y., Arefi, M. and Irani Rahaghi, M. (2020), "Nonlocal vibration characteristics of a functionally graded porous cylindrical nanoshell integrated with arbitrary arrays of piezoelectric elements", Mech. Based Des. Struct. Machines, 1-28. https://doi.org/10.1080/15397734.2020.1830799.   DOI
45 Madan, R., Bhowmick, S. and Saha, K. (2019), "Limit angular speed of L-FGM rotating disk for both temperature dependent and temperature independent mechanical properties", Mater. Today: Proceedings, 18, 2366-2373. https://doi.org/10.1016/j.matpr.2019.07.080.   DOI
46 Madan, R., Saha, K. and Bhowmick, S. (2019b), "Limit elastic analysis of E-FGM rotating disk with temperature dependent mechanical properties", MMEP, 6(4), 634-640. https://doi.org/10.18280/mmep.060419.   DOI
47 Madan, R. and Bhowmick, S. (2021b), "Limit elastic analysis of functionally graded rotating disks under thermo-mechanical loading", Int. J. Appl. Mech., 13, 2150033. https://doi.org/10.1142/S1758825121500332.   DOI
48 Mahdavi, E., Ghasemi, A. and Alashti, R.A. (2016), "Elastic-plastic analysis of functionally graded rotating disks with variable thickness and temperature-dependent material properties under mechanical loading and unloading", Aeros. Sci. Technol., 59, 57-68. https://doi.org/10.1016/j.jestch.2019.04.007.   DOI
49 Mirjavadi, S.S., Forsat, M., Barati, M.R. and Hamouda, A.M.S. (2020), "Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection", Steel Compos. Struct., 35(4), 567-578. https://doi.org/10.12989/scs.2020.35.4.567.   DOI
50 Moita, J.S., Araujo, A.L., Mota Soares, C.M., Mota Soares, C.A. and Herskovits, J. (2016), "Material and geometric nonlinear analysis of functionally graded plate-shell type structures", Appl. Compos. Mater., 23(4), 537-554. https://doi.org/10.1007/s10443-016-9473-8.   DOI
51 Phung-Van P, Thai, C.H., Ferreira, A.J.M. and Rabczuk, T. (2020), "Isogeometric nonlinear transient analysis of porous FGM plates subjected to hygro-thermo-mechanical loads", Thin-Walled Struct., 148, 106497. https://doi.org/10.1016/j.tws.2019.106497.   DOI
52 Reddy, J.N. and Chin, C.D. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Thermal Stresses, 21(6), 593-626. https://doi.org/10.1080/01495739808956165.   DOI
53 Shackelford, J.F. and Alexander, W. (2001), CRC Materials Science and Engineering Handbook, CRC Press, Boca Raton, FL
54 Thanh, C.L., Nguyen, T.N., Vu, T.H., Khatir, S. and Abdel Wahab, M. (2020), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-020-01154-0.   DOI
55 Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aeros. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.   DOI
56 Woodward, B. and Kashtalyan, M. (2019), "Three-dimensional elasticity analysis of sandwich panels with functionally graded transversely isotropic core", Arch Appl Mech, 89(12), 2463-2484. https://doi.org/10.1007/s00419-019-01589-y.   DOI
57 Madan, R. and Bhowmick, S. (2021c), "A numerical solution to thermo-mechanical behavior of temperature dependent rotating functionally graded annulus disks", AEAT, 93, 733-744. https://doi.org/10.1108/AEAT-01-2021-0012.   DOI
58 Madan, R. and Bhowmick, S. (2020), "A review on application of FGM fabricated using solid-state processes", Adv. Mater. Processing Technol., 6, 608-619. https://doi.org/10.1080/2374068X.2020.1731153.   DOI
59 Yan, K., Zhang, Y., Cai, H. and Tahouneh, V. (2020), "Vibrational characteristic of FG porous conical shells using Donnell's shell theory", Steel Compos. Struct., 35(2), 249-260. https://doi.org/10.12989/scs.2020.35.2.249.   DOI
60 Madan, R., Saha, K. and Bhowmick, S. (2020), "Limit speeds and stresses in power law functionally graded rotating disks", Adv. Mater. Res., 9(2), 115-131. https://doi.org/10.12989/amr.2020.9.2.115.   DOI
61 Matula, I., Dercz, G. and Barczyk, J. (2020), "Titanium/Zirconium functionally graded materials with porosity gradients for potential biomedical applications", Mater. Sci. Technol., 36(9), 972-977. https://doi.org/10.1080/02670836.2019.1593603.   DOI
62 Benferhat, R., Daouadji, T.H., Hadji, L. and Mansour, M.S. (2016), "Static analysis of the FGM plate with porosities", Steel Compos. Struct., 21(1), 123-136. http://dx.doi.org/10.12989/scs.2016.21.1.123.   DOI
63 Mojahedin, A., Jabbari, M., Khorshidvand, A.R. and Eslami, M.R. (2016), "Buckling analysis of functionally graded circular plates made of saturated porous materials based on higher order shear deformation theory", Thin-Walled Struct., 99, 83-90. https://doi.org/10.1016/j.tws.2015.11.008.   DOI
64 Rabia, B., Daouadji, T.H. and Abderezak, R. (2019), "Effect of porosity in interfacial stress analysis of perfect FGM beams reinforced with a porous functionally graded materials plate", Struct. Eng. Mech., 72(3), 293-304. https://doi.org/10.12989/sem.2019.72.3.293.   DOI
65 Safarpour, M., Rahimi, A.R. and Alibeigloo, A. (2020), "Static and free vibration analysis of graphene platelets reinforced composite truncated conical shell, cylindrical shell, and annular plate using theory of elasticity and DQM", Mech. Based Des. Struct. Mach., 48(4), 496-524. https://doi.org/10.1080/15397734.2019.1646137.   DOI
66 Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.   DOI
67 Zhang, Y., Jin, G., Chen, M., Ye, T., Yang, C. and Yin, Y. (2020), "Free vibration and damping analysis of porous functionally graded sandwich plates with a viscoelastic core", Compos. Struct., 244, 112298. https://doi.org/10.1016/j.compstruct.2020.112298.   DOI
68 Zheng, Y., Bahaloo, H., Mousanezhad, D., Mahdi, E., Vaziri, A. and Nayeb-Hashemi, H. (2016), "Stress analysis in functionally graded rotating disks with non-uniform thickness and variable angular velocity", Int. J. Mech. Sci., 119, 283-293. https://doi.org/10.1016/j.ijmecsci.2016.10.018.   DOI
69 Nakamura, T., Wang, T. and Sampath, S. (2000), "Determination of properties of graded materials by inverse analysis and instrumented indentation", Acta Materialia, 48, 4293-4306. https://doi.org/10.1016/S1359-6454(00)00217-2.   DOI
70 Wang, F., Cheng, L. and Liang, S. (2019), "Effects of pore on thermal diffusivity and thermal radiation properties of C/SiC composites at high temperatures", Appl. Compos. Mater., 26(5-6), 1411-1422. https://doi.org/10.1007/s10443-019-09787-1.   DOI