• Title/Summary/Keyword: porous polymer

Search Result 450, Processing Time 0.026 seconds

Fabrication of Activated Porous Carbon Using Polymer Decomposition for Electrical Double-Layer Capacitors (고분자 융해 반응을 이용한 전기 이중층 커패시터용 다공성 활성탄 제조)

  • Sung, Ki-Wook;Shin, Dong-Yo;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.29 no.10
    • /
    • pp.623-630
    • /
    • 2019
  • Because of their excellent stability and highly specific surface area, carbon based materials have received attention as electrode materials of electrical double-layer capacitors(EDLCs). Biomass based carbon materials have been studied for electrode materials of EDLCs; these materials have low capacitance and high-rate performance. We fabricated tofu based porous activated carbon by polymer dissolution reaction and KOH activation. The activated porous carbon(APC-15), which has an optimum condition of 15 wt%, has a high specific surface area($1,296.1m^2\;g^{-1}$), an increased average pore diameter(2.3194 nm), and a high mesopore distribution(32.4 %), as well as increased surface functional groups. In addition, APC has a high specific capacitance($195F\;g^{-1}$) at low current density of $0.1A\;g^{-1}$ and excellent specific capacitance($164F\;g^{-1}$) at high current density of $2.0A\;g^{-1}$. Due to the increased specific surface area, volume ratio of mesopores, and surface functional groups, the specific capacitance and high-rate performance increased. Consequently, the tofu based activated porous carbon can be proposed as an electrode material for high-performance EDLCs.

Characterization and Evaluation of Porous Vermiculite Containing Polyethylene Composites Film

  • Lee, Hye Sun;Chang, Jeong Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.1
    • /
    • pp.85-89
    • /
    • 2018
  • This work reported the preparation and evaluation of a freshness-keeping film prepared by composite of a porous ceramic material such as vermiculite and polyethylene polymer. The ceramic material was pretreated physically and chemically to control the specific surface areas and particle size. A high content master-batch was prepared using the pretreated vermiculite. The master-batch, which contained 30% ceramic material, was mixed with a polymer material to prepare a film containing 3% vermiculite. The oxygen permeability and various physicochemical properties were evaluated for the prepared films. Compared to plain polyethylene film, the vermiculite loaded polyethylene film has a freshness maintenance property, indicating the creation of an improved film.

Fabrication of Duplex Ceramic Composites by Organic-Inorganic Solution Process

  • Lee, Sang-Jin;Kim, Youn-Cheol
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.837-841
    • /
    • 2003
  • Duplex microstructure of zirconia and alumina has been achieved via an organic-inorganic solution technique. Zirconium 2,4-pentanedionate, aluminum nitrate and polyethylene glycol were dissolved in ethyl alcohol without any precipitation. The organicinorganic precursor gels were turned to porous powders having volume expansion through explosive, exothermic reaction during drying process. The volume expansion was caused by abrupt decomposition of the organic groups in the gels during the vigorous exothermic reaction. The volume expanded, porous powders were crystallized and densified at 1500$^{\circ}C$ for 1 h. At the optimum amount of the PEG polymer, the metal cations were well dispersed in the solution and a homogeneous polymeric network was formed. The polymer content also affected on the specific surface area of the synthesized powder and the grain size of the sintered composite.

Dielectric and piezoelectric properties of PZT-polymer 3-3 type composite for ultrasonic transducer applications (초음파 트랜스듀서용 PZT-고분자 3-3형 복합압전체의 유전 및 압전특성)

  • 박정학;이수호;최헌일;사공건;배진호
    • Electrical & Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.146-151
    • /
    • 1996
  • PZT powders were prepared by the molten salt synthesis method. The porous PZT ceramics were made from a mixture of PZT and polyvinylalcohol(PVA) by BURPS(Bumout Plastic Sphere) technique. The 3-3 type composites were fabricated by impregnating an sintered porous PZT ceramics with various polymer matrices. The relative permittivity of 3-3 type composite specimens was shown 860-1,100 smaller than that of solid PZT ceramics(2,100), and the dissipation factors of composite specimens were about 0.02 to 0.03. The piezoelectric coefficient d$_{33}$ of composite specimens(285-328*10$^{12}$ C/N) was comparable with that of single phase PZT specimens(364*10$^{-12}$ C/N). The thickness mode coupling factor k$_{t}$(O.5-0.6) of composite specimens was comparable with that of single phase PZT specimens(k$_{t}$-0.7), and the mechanical quality factor of composite specimens was smaller than 10, and thus these 3-3 type composite specimens would be believed as a good candidates for broad band transducer applications.ons.

  • PDF

Surface Properties of the High Porous Carbon Aerogels (고다공성 카본 에어로젤(C-Aerogel) 표면 특성)

  • Kim, Ji-Hye;Lee, Chang-Rae;Jeong, Young-Soo;Kim, Yang-Do;Kim, In-Bae
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.3
    • /
    • pp.114-120
    • /
    • 2008
  • The pyrolysized carbon xerogel and aerogels were prepared from the sol-gel polymerization of resorcinol-formaldehyde(RF) followed by the dry process under ambient pressure and supercritical carbon dioxide condition respectively. The thermal behaviour of RF polymer xerogel was investigated with TGA analyzer to correspond with the pyrolysis process. The surface properties such as particle size, morphology and the point of zero charge of the pyrolysized porous carbon aerogels were studied for the precious metal catalyst supported media. It was found that the volume of the polymer aerogel decreased because of the significant linear shrinkage and weight loss of polymer gel during the carbonization. The point of zero charge of the carbon aerogel pyrolysized at $1050^{\circ}C$ under inert gas flow was about 10.

Settlement and Mass Change of the Porous Concrete Using Super Absorbent Polymer (고흡수성 수지를 활용한 다공 구조 콘크리트 가능성 연구)

  • Jo, Jae-Hyun;Park, Jae-Woong;Lim, Gun-Su;Kim, Jong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.311-312
    • /
    • 2023
  • In this study, porous concrete with improved functionality was developed by using superabsorbent polymer (SAP) to provide rooting space for plants. The depth of settlement and mass change according to the substitution and addition rate of SAP were determined by investigating the functional performance of SAP and the volume change upon saturation. Test results indicated the depth of penetration settlement increased as the substitution rate of SAP increased, but the mass change could not be confirmed as the addition rate of SAP increased. The instability of the specimens due to the excessive volume change of SAP, as well as the osmotic pressure phenomenon according to the pH concentration, were identified as the cause. Therefore, future studies are needed to investigate the appropriate substitution and addition rate of SAP, as well as to reduce the osmotic pressure phenomenon according to the pH concentration, which would contribute to the improvement of the functional performance of vegetation concrete.

  • PDF

Strength and Reliability of Porous Ceramics Measured by Sphere Indentation on Bilayer Structure

  • Ha, Jang-Hoon;Kim, Jong-Ho;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.7
    • /
    • pp.503-507
    • /
    • 2004
  • The importance of porous ceramics has been increasingly recognized and adequate strength of porous ceramics is now required for structural applications. Porosities of porous ceramics act as flaws in inner volume and outer surface which result in severe strength degradation. The effect of pore structure, however, on strength and reliability of porous ceramics has not been clearly understood. We investigate the relationship between pore structure and mechanical properties using a sphere indentation on bilayer structure, porous ceramic top layer with soft polymer substrate. Porous alumina and silica were prepared to characterize the isolated pore structure and interconnected pore structure, respectively. The porous ceramic with 1mm thickness were bonded to soft polycarbonate substrate and then fracture strengths were estimated from critical loads for radial cracking of porous ceramics during sphere indentation from top surface. This simple and reproducible technique provides Weibull modulus of strength of porous ceramics with different pore structure. It shows that the porous ceramics with isolated pore structure have higher strength and higher Weibull modulus as well, than those with interconnected pore structure even with the same porosity.

A Study on the Water Absorption Ability of Propionyl Chitosan to the Various Aqueous Solutions (Propionyl Chitosan의 여러 가지 수용액에 대한 흡수능에 관한 연구)

  • Goo, Hyun Chul;Chang, Byung Kwon;Choi, Kyu Suk
    • Applied Chemistry for Engineering
    • /
    • v.4 no.2
    • /
    • pp.324-334
    • /
    • 1993
  • Chitin, the natural polymer has been known as harmless and innoxious material to human and has been also known to be biodegradable. Chitosan which was prepared by the deacetylation of chitin, was propionylated to obtain porous bead shaped propionyl chitosan and its possibility as a water-absorbant polymer was investigated. Propionyl chitosan porous bead was synthesized by acylation reaction using emulsion method of acetic acid solution and propionyl chitosan was partially crosslinked using ethyleneglycol diglycidyl ether. Through the experiment varying the moles of propionic anhydride, reaction time and reaction temperature, best results for water-absorption ability was obtained at reaction condition of 5 moles of propionic anhydride, 10 hours of reaction time and $22^{\circ}C$ of reaction temperature. The absorption ability to the distilled water, various salt solutions, artificial urine and artificial blood, absorption time and retention of water of synthesized porous bead were investigated and also mechanical strength after crosslinking was determined.

  • PDF

Sensing characteristics of polyaniline sensor coated with porous PVDF layers to methanol gas under various humidity conditions (다공성 PVDF막이 코팅된 Polyaniline 센서의 다양한 습도분위기의 메탄올 가스에 대한 감응특성)

  • Lim, Cheol-Beom;Sohn, Sung-Ok;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.205-210
    • /
    • 2006
  • Hydrophobic polymer [ex. Poly(vinylidenfluoride)] layer was coated on polyaniline (PANi) sensor to reduce the contamination humidity. The differences in sensitivity to methanol gas detection in various humidity condition between pure-PANi sensor and sensor coated with poly(vinylidenfluoride) polymer (PVDF) (coated-PANi sensor) were investigated. Considering the relation between the density of pore, which was coated on the layer of the PANi sensor, and sensitivity was investigated. To fabricate the porous PVDF layer on PANi sensor, poly(vinylalcohol) (PVA), which is water-soluble polymer, was used. Coated-PANi sensor was less affected by humidity compared with pure-PANi sensor. And higher density of pore on PVDF layer led to higher sensitivity.