• Title/Summary/Keyword: porous block

Search Result 72, Processing Time 0.029 seconds

Fabrication of High Permeable Nanoporous Carbon-SiO$_2$ Membranes Derived from Siloxane-containing Polyimides

  • Kim, Youn Kook;Han, Sang Hoon;Park, Ho Bum;Lee, Young Moo
    • Korean Membrane Journal
    • /
    • v.6 no.1
    • /
    • pp.16-23
    • /
    • 2004
  • The silica containing carbon (C-SiO$_2$) membranes were fabricated using poly(imide siloxane) (PIS) having -CO- swivel group. The characteristics of porous C-SiO$_2$ structures prepared by the pyrolysis of poly(imide siloxane) were related with the micro-phase separation between the imide block and the siloxane block. Furthermore, the nitrogen adsorption isotherms of the CMS and the C-SiO$_2$ membranes were investigated to define the characteristics of porous structures. The C-SiO$_2$ membranes derived from PIS showed the type IV isotherm and possessed the hysteresis loop, which was associated with the mesoporous carbon structures, while the CMS membranes derived from PI showed the type I isotherm. For the molecular sieving probe, the C-SiO$_2$ membranes pyrolyzed at 550, 600, and 700$^{\circ}C$ showed the O$_2$ permeability of 924, 1076, and 367 Barrer (1 ${\times}$ 10$\^$-10/㎤(STP)cm/$\textrm{cm}^2$$.$s$.$cmHg) and O$_2$/N$_2$ selectivity of 9, 8, and 12.

Experimental Study on Rainfall Runoff Reduction Effects by Permeable Polymer Block Pavement (투수성 폴리머 블록 포장에 의한 우수 유출 저감 효과에 관한 실험적 연구)

  • Sung, Chan-Yong;Kim, Young-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.157-166
    • /
    • 2012
  • Most of the roads are paved with impermeable materials such as asphalt concrete and cement concrete, and in the event of heavy rainfall, rainwater directly flows into river through a drainage hole on the pavement surface. This large quantity of rainwater directly spilled into the river frequently leads to the flooding of urban streams, damaging lowlands and the lower reaches of a river. In recent years there has been a great deal of ongoing research concerning water permeability and drainage in pavements. Accordingly, in this research, a porous polymer concrete was developed for permeable pavement by using unsaturated polyester resin as a binder, recycled aggregate as coarse aggregate, fly ash and blast furnace slag as filler, and its physical and mechanical properties were investigated. Also, 3 types of permeable polymer block by optimum mix design were developed and rainfall runoff reduction effects by permeability pavement using permeable polymer block were analyzed based on hydraulic experimental model. The infiltration volume, infiltration ratio, runoff initial time and runoff volume in permeability pavement with permeable polymer block of $300{\times}300{\times}80$ mm were evaluated for 50, 100 and 200mm/hr rainfall intensity.

A Study on the Groundwater Flow in Fractured-Porous Media by Flow Resistance Theory (단열-다공암반에서 유동저항 이론을 이용한 지하수 유동 평가에 관한 연구)

  • Han Ji-Woong;Hwang Yong-Soo;Kang Chul-Hyung
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.231-238
    • /
    • 2005
  • On the basis of flow resistance theory the conceptual model and related mathematical descriptions is proposed for resistance modeling of groundwater flow in CPM(continuum Porous medium), DFN(discrete fracture network) and fractured-porous medium. The proposed model is developed on the basis of finite volume method assuming steady-state, constant density groundwater flow. The basic approach of the method is to evaluate inter-block flow resistance values for a staggered grid arrangement, i.e. fluxes are stored at cell walls and scalars at cell centers. The balance of forces, i.e. the Darcy law, is utilized for each control volume centered around the point where the velocity component is stored. The transmissivity (or permeability) at the interface is assumed to be the harmonic average of neighboring blocks. Flow resistance theory was utilized to relate the fluxes between the grid blocks with residual pressures. The flow within porous medium is described by three dimensional equations and that within an individual fracture is described by a two dimensional equivalent of the flow equations for a porous medium. Newly proposed models would contribute to develop flow simulation techniques with various matrix characteristics.

  • PDF

A Study on Manufacturing and Processes of the Lightweight Block Unit for Roof Greening with Bottom ash (옥상녹화용 경량유닛의 블록제조 공법 및 공정 연구)

  • Moon, Jong-Wook;Oh, Jung-Keun;Lee, Tae-Goo
    • KIEAE Journal
    • /
    • v.12 no.3
    • /
    • pp.95-100
    • /
    • 2012
  • Thermal phenomena has caused abnormal weather phenomena due to the lack of urban green spaces To solve these problems, the country of recorded a city business is actively evolving trends. but in all the land, most built-up city's green buildings unless the demolition of the composition is an impossible situation, green space in urban areas, with emphasis on composition. In this study, thermal power plants that occured in the evolution of vegetation by utilizing Bottom Ash was tried to develop a lightweight block. Bottom Ash block to take advantage of vegetation is focused create green space in urban areas Vegetation in the block was carried out manufacturing lightweight, porous, lightweight water ratio suitable for three types of blocks selected according to its kind study on the manufacturing and process. Bottom Ash from this study at the time of disposal of coal ash generated by recycling the landfill shortages, loss of landfill costs, environmental pollution and are trying to solve the same problem at the same time.

Correction of Frontal bone defect in Cleidocranial Dysostosis with Porous Polyethylene(Medpor®): A case report (쇄골두개이형성증(Cleidocranial Dysostosis)환자에서 Porous Polyethylene(Medpor®)를 이용한 두개골 함몰의 교정 1례)

  • Moh, Jae Seong;Na, Young Cheon
    • Archives of Plastic Surgery
    • /
    • v.36 no.4
    • /
    • pp.481-484
    • /
    • 2009
  • Purpose: Cleidocranial dysostosis is a rare hereditary disorder affecting bones that develop by intramembranous formation. The typical features include excessive growth of transverse diameter of the skull, hypoplastic clavicles, low height and characteristic facial features. Methods: A 28 years old female patient visited by frontal area depression. The diagnosis was performed by computed tomographic study and radiographic imaging. The patient has widely opened anterior fontanelle, partial fused metopic suture, multiple wormian bone and supernumenary impacted teeth. Under the coronal incision, we exposed depressed frontal area and corrected with Medpor block carving. Results: Postoperatively, frontoparietal skull was aestheticlly improved and she was satisfied with the results. Conclusion: Authors report a case of cleiodocranial dysostosis who has been done correction of abnormal skull shape by Medpor$^{(R)}$ insertion.

Physical Properties of Soils under the Grass Block Porous Pavements (투수성 잔디블록 포장 하부 토양의 물리성)

  • Han, Seung-Ho;Kim, Won-Tae;Kang, Jin-Hyoung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.4 s.117
    • /
    • pp.96-104
    • /
    • 2006
  • Impervious pavement is primary contributor to the malfunctioning of the urban water circulation system. The aim of this research is to provide basic information and data for new pavement materials and paving technology which could enhance the urban water circulation system. For the study purposes, physical properties of soils sampled from 16 stations were analyzed. The sampling spots were paved with grass block porous pavement material. The findings from the analysis are as follows. The hardness of soils under the pavement was $17{\sim}22mm$ for thoroughfare and $6{\sim}32mm$ for parking areas. The bulk density was $1.42{\sim}1.81g/cm^{3}$ for thoroughfare and $1.38{\sim}1.75g/cm^{3}$ for parking area. The solid phase ration was $46.9{\sim}62.5m^{3}/m^{3}$ for thoroughfare and $45.6{\sim}61.3m^{3}/m^{3}$ for parking area. The porosity was $37.5{\sim}53.1m^{3}/m^{3}$ for thoroughfare and $38.7{\sim}54.4m^{3}/m^{3}$ for parking area. The saturated hydraulic conductivity was $8{\sim}164mm/hr$ for thoroughfare and $14{\sim}201mm/hr$ for parking area. The saturated hydraulic conductivity of the H sample area (the area was completed three months ago) and that of the other area were compared. There was up to 80% decreases of the saturated hydraulic conductivity within one year after the completion of pavement. After the first year, decrease in the saturated hydraulic conductivity was modest. Also there are changes in both surface and under soil physical properties of the grass block porous pavement depending on compaction. The extent of change depends on the degree of compaction. All these factors are combined to influence the permeability of the soil under the pavements. The results of this suggest that it is required to develop a new pavement technology which ensures both the durability and porosity of the pavement to improve the water circulation system by applying Ecological Area Rate.

Evaluation of Hydraulic Stability Using Real Scale Experimental on Porous Concrete Revetment Block (다공성콘크리트 호안블록의 실규모 실험을 통한 수리안정성 평가)

  • Kim, Bong-Kyun;Seo, Dae-Seuk;Park, Jun-Seok;Kim, Yun-Yung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.122-130
    • /
    • 2016
  • The past few decades of industrialization enabled human-centered stream developments, which in turn resulted in constructing straight or covered streams, which are used only for sewage disposal purpose. However, these types of streams have become the cause of flood damages such as localized heavy rain. In response, various construction methods have been implemented to prevent stream and embankment damages. However, regulations regarding these measures only lay out minimum standards such as the height of slopes and the minimum angle of inclination. Moreover, examination of tractive force, the most crucial factor in preventing flood damage, is nonexistent. Therefore, this study evaluates various tractive forces by implementing a porous concrete tetrapod at a full scale artificial stream for experiment, controlling the rate of inflow, and measuring the velocity and depth of the stream under different experiment conditions. The test results of the compressive strength, and porosity and density of rock of the porous concrete tetrapod was between 16.6 and 23.2 MPa, and the actual measurement of air void was 10.1%, thus satisfying domestic standard. The result of tractive force experiment showed a limiting tractive force of $47.202N/m^2$, not satisfying the tractive force scope of $67N/m^2$ the stream design working expertise proposes. However, there was neither damage nor loss of blocks and hardpan. Based on previous researches, it can be expected that there will be resistance against a stronger tractive force. Therefore, it is necessary to conduct another experiment on practical limiting tractive force by adjusting some experimental conditions.